「HAOI2015」按位或
「HAOI2015」按位或
解题思路 :
这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可。
= \frac{1}{1-\sum_{T \cap S = \emptyset}p_T} \\
= \frac{1}{1-\sum_{T \cap (U-S) = T}p_T} \\
= \frac{1}{1-\sum_{T \subseteq (U-S)}p_T}
\]
对 \(p\) 做莫比乌斯变换得到:
E(minS) = \frac{1}{1-p'_{(U-S)}}
\]
然后直接 \(\text{Min-Max}\) 容斥就做完了,总复杂度 \(O(n2^n)\)。
code
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 2000005;
const double eps = 1e-6;
double p[N], ans;
int cnt[N], n;
int main(){
read(n);
for(int i = 0; i < (1 << n); i++) scanf("%lf", &p[i]);
for(int i = 0; i < n; i++)
for(int s = 0; s < (1 << n); s++)
if((1 << i) & s) p[s] += p[s^(1<<i)], cnt[s]++;
for(int i = 0; i < n; i++)
if(1.0 - p[(1<<n)-(1<<i)-1] < eps) return puts("INF"), 0;
for(int s = 0; s < (1 << n); s++){
double res = 1.0 - p[(1<<n)-s-1];
if(res > eps) ans += (1.0 / res) * (cnt[s] & 1 ? 1.0 : -1.0);
}
printf("%.10lf", ans);
return 0;
}
「HAOI2015」按位或的更多相关文章
- LOJ#2127「HAOI2015」按位或
用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...
- 【LOJ】#2127. 「HAOI2015」按位或
题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...
- 【LOJ2127】「HAOI2015」按位或
题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 「HAOI2015」「LuoguP3178」树上操作(树链剖分
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- 【LOJ】#2126. 「HAOI2015」数组游戏
题解 简单分析一下就知道\(\lfloor \frac{N}{i} \rfloor\)相同的\(i\)的\(sg\)函数相同 所以我们只要算\(\sqrt{n}\)个\(sg\)函数就好 算每一个\( ...
- 「HAOI2015」树上操作(非树剖)
题目链接(luogu) 看到标签::树链剖分,蒟蒻Sy开始发抖,不知所措,但其实,本题只需要一个恶心普通的操作就可以了!! 前提知识:欧拉序 首先我们知道dfs序,就是在dfs过程中,按访问顺序进行编 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
随机推荐
- HOMEWORK-2
没什么超乎常人的技能吧,我想.关于C的学习之前一直是自学,上了大学也是吃老底(上一篇提到了),因为这个学期一直在学matlab,C除了帮人写过作业教过课自己也没写点什么. 指针的概念还算清楚,毕竟经常 ...
- SDUT 3928
Description C~K 和 PBH 经常玩一个游戏.游戏规则如下:现给定一个 n*n 的棋盘,一个石头被放在棋盘的左上角. 他们轮流移动石头.每一回合,两个人只能把石头向上,下,左,右四个方向 ...
- 【leetcode 简单】第三十六题 最小栈
设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈. push(x) -- 将元素 x 推入栈中. pop() -- 删除栈顶的元素. top() -- 获取栈顶元素. ...
- POJ 3233 Matrix Power Series (矩阵快速幂)
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...
- JodaTime报时区异常错误
在将爬下来的网页解析需要的字段批量入口的时候(逻辑类似下面): @Test public void test_001(){ String TIME = "1990-04-15"; ...
- script标签中type为<script type="text/x-template">是个啥
写过一点前端的都会碰到需要使用JS字符串拼接HTML元素然后append到页面DOM树上的情况,一般的写法都是使用+号以字符串的形式拼接,如果是短点的还好,如果很长很长的话就会拼接到令人崩溃了. 比如 ...
- win10-idea2018
下载jar JetbrainsCrack-2.9-release-enc.jar idea64.exe.vmpotions 配置 -javaagent:D:\devsoft\idea\bin\Jetb ...
- svn add --no-ignore
提交新代码时:svn add --no-ignore /dir 不加的话可能会漏提交某些依赖或文件. Svn st -q --no-ignore. 提交时不需要加
- 005zabbix3.0报错记录
一.问题描述 在zabbix_server添加变量时,出现了以下的报错,
- nginx location 指令意义
基本语法:location [=|~|~*|^~] /uri/ { … } = 严格匹配.如果这个查询匹配,那么将停止搜索并立即处理此请求.~ 为区分大小写匹配(可用正则表达式)!~为区分大小写不匹配 ...