「HAOI2015」按位或

解题思路 :

这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可。

\[E(minS) = \frac{1}{\sum_{T \cap S\neq \emptyset} p_T} \\
= \frac{1}{1-\sum_{T \cap S = \emptyset}p_T} \\
= \frac{1}{1-\sum_{T \cap (U-S) = T}p_T} \\
= \frac{1}{1-\sum_{T \subseteq (U-S)}p_T}
\]

对 \(p\) 做莫比乌斯变换得到:

\[p'_S=\sum_{T \subseteq S} p_T \\
E(minS) = \frac{1}{1-p'_{(U-S)}}
\]

然后直接 \(\text{Min-Max}\) 容斥就做完了,总复杂度 \(O(n2^n)\)。

code

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 2000005;
const double eps = 1e-6;
double p[N], ans;
int cnt[N], n;
int main(){
read(n);
for(int i = 0; i < (1 << n); i++) scanf("%lf", &p[i]);
for(int i = 0; i < n; i++)
for(int s = 0; s < (1 << n); s++)
if((1 << i) & s) p[s] += p[s^(1<<i)], cnt[s]++;
for(int i = 0; i < n; i++)
if(1.0 - p[(1<<n)-(1<<i)-1] < eps) return puts("INF"), 0;
for(int s = 0; s < (1 << n); s++){
double res = 1.0 - p[(1<<n)-s-1];
if(res > eps) ans += (1.0 / res) * (cnt[s] & 1 ? 1.0 : -1.0);
}
printf("%.10lf", ans);
return 0;
}

「HAOI2015」按位或的更多相关文章

  1. LOJ#2127「HAOI2015」按位或

    用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...

  2. 【LOJ】#2127. 「HAOI2015」按位或

    题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...

  3. 【LOJ2127】「HAOI2015」按位或

    题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...

  4. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  5. 「HAOI2015」「LuoguP3178」树上操作(树链剖分

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...

  6. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  7. 【LOJ】#2126. 「HAOI2015」数组游戏

    题解 简单分析一下就知道\(\lfloor \frac{N}{i} \rfloor\)相同的\(i\)的\(sg\)函数相同 所以我们只要算\(\sqrt{n}\)个\(sg\)函数就好 算每一个\( ...

  8. 「HAOI2015」树上操作(非树剖)

    题目链接(luogu) 看到标签::树链剖分,蒟蒻Sy开始发抖,不知所措,但其实,本题只需要一个恶心普通的操作就可以了!! 前提知识:欧拉序 首先我们知道dfs序,就是在dfs过程中,按访问顺序进行编 ...

  9. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

随机推荐

  1. 【洛谷 P3705】 [SDOI2017]新生舞会(费用流,01分数规划)

    题目链接 看到这题我想到了以前做过的一题,名字记不清了,反正里面有"矩阵"二字,然后是道二分图匹配的题. 经典的行列连边网络流. 第\(i\)行和第\(j\)列连边,费用为\(b[ ...

  2. 2017ACM暑期多校联合训练 - Team 7 1002 HDU 6121 Build a tree (深搜+思维)

    题目链接 Problem Description HazelFan wants to build a rooted tree. The tree has n nodes labeled 0 to n− ...

  3. 关于angularJS的一些用法

    AngularJS 事件指令: ng-click/dblclick ng-mousedown/up ng-mouseenter/leave ng-mousemove/over/out ng-keydo ...

  4. uboot1.1.6 start.s分析

    .Stage1 start.S代码结构 u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:(1)定义入口.由于一个可执行的Image必须有一个入口点,并 ...

  5. iOS中响应者链条-触摸事件,hitTest方法坐标转换

    总体来说,分2个步骤: 一,从上到下寻找合适的控件来处理这个触摸事件.如下图,如果点击了黄色4,则UIApplication -> UIWindow -> 1白色 -> 2橙色 -& ...

  6. MongoDB之安装和基本使用(一)

    环境 ubuntu16.04 mongodb基本特点 MongoDB 是一个基于分布式 文件存储的NoSQL数据库;可以把MongoDB想象成一个大py字典. 模式自由 :可以把不同结构的文档存储在同 ...

  7. git服务器的简单搭建

    安装git 安装git,参考:https://git-scm.com/book/zh/v1/%E8%B5%B7%E6%AD%A5-%E5%AE%89%E8%A3%85-Git 创建git仓库 使用ro ...

  8. 利用Google API生成二维码

    什么是二维码:二维码是二维条形码的一种,可以将网址.文字.照片等信息通过相应的编码算法编译成为一个方块形条码图案,手机用户可以通过摄像头和解码软件将相关信息重新解码并查看内容.读取方式:利用30万画素 ...

  9. rds 与mysql 进行主从同步

    .rds上默认会有server-****,只需要配置从数据库: .从数据库的配置流程: .[mysqld] log-bin = mysql-bin-changelog #要和主库中的名字一样 rela ...

  10. PHP laravel 5.0 Blade 模板引擎 Api使用备注

    PHP laravel 5.0 Blade 模板引擎 Api使用备注 /** * PHP laravel 5.0 Blade 模板引擎 Api使用备注 **/ //子模版中开头,调用@extends( ...