----------

因为这里不太方便编辑公式,所以很多公式推导的细节都已经略去了,如果对相关数学表述感兴趣的话,请戳这里的链接Softmax的理解与应用 - superCally的专栏 - 博客频道 - http://CSDN.NET") 0px 2px / cover;">

----------

Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用。

我们先来直观看一下,Softmax究竟是什么意思

我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能

但有的时候我不想这样,因为这样会造成分值小的那个饥饿。所以我希望分值大的那一项经常取到,分值小的那一项也偶尔可以取到,那么我用softmax就可以了 现在还是a和b,a>b,如果我们取按照softmax来计算取a和b的概率,那a的softmax值大于b的,所以a会经常取到,而b也会偶尔取到,概率跟它们本来的大小有关。所以说不是max,而是 Soft max 那各自的概率究竟是多少呢,我们下面就来具体看一下

定义

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是

也就是说,是该元素的指数,与所有元素指数和的比值

这个定义可以说非常的直观,当然除了直观朴素好理解以外,它还有更多的优点

1.计算与标注样本的差距

在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Loss,才能应用反向传播。Loss定义为交叉熵

取log里面的值就是这组数据正确分类的Softmax值,它占的比重越大,这个样本的Loss也就越小,这种定义符合我们的要求

2.计算上非常非常的方便

当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度

我们定义选到yi的概率是

然后我们求Loss对每个权重矩阵的偏导,应用链式法则(中间推导省略)

最后结果的形式非常的简单,只要将算出来的概率的向量对应的真正结果的那一维减1,就可以了

举个例子,通过若干层的计算,最后得到的某个训练样本的向量的分数是[ 1, 5, 3 ], 那么概率分别就是[0.015,0.866,0.117],如果这个样本正确的分类是第二个的话,那么计算出来的偏导就是[0.015,0.866−1,0.117]=[0.015,−0.134,0.117],是不是很简单!!然后再根据这个进行back propagation就可以了

Softmax 函数的特点和作用的更多相关文章

  1. Softmax 函数的特点和作用是什么?

    作者:张欣链接:https://www.zhihu.com/question/23765351/answer/98897364来源:知乎著作权归作者所有,转载请联系作者获得授权. softmax 回归 ...

  2. softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  3. Softmax函数详解与推导

    一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...

  4. [机器学习入门篇]-Logistic函数与Softmax函数

    1.Logistic函数 在维基百科中,对logistic函数这样介绍道: A logistic function or logistic curve is a common "S" ...

  5. [转]softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  6. 深度学习(四) softmax函数

    softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...

  7. Sigmoid函数与Softmax函数的理解

    1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z ...

  8. python3 Softmax函数

    Softmax函数公式 Softmax的作用简单的说就计算一组数值中每个值的占比 import torch import torch.nn.functional as F # 原始数据tensor y ...

  9. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

随机推荐

  1. 20145211《网络渗透》Adobe阅读器渗透攻击

    20145211<网络渗透>Adobe阅读器渗透攻击 实验准备 1.用了一个kali,一个English Winxp3,并保证能相互ping通 2.开启显示隐藏文件 实验步骤: 1.开启m ...

  2. 2017阿里C++研发工程师-校招-笔试模拟

    题目描述: 猎人把一对兔子婴儿(一公一母称为一对)放到一个荒岛上,两年之后,它们生00下一对小兔,之后开始每年都会生下一对小兔.生下的小兔又会以同样的方式继续繁殖. 兔子的寿命都是x(x>=3) ...

  3. gerrit代码审核工具之“error unpack failed error Missing unknown”错误解决思路

    使用gerrit代码审核工具时遇到error: unpack failed: error Missing unknown d6d7c89bd1d77f44c5c8e99437aaffbfc0684e7 ...

  4. Flume NG初次使用

    一.什么是Flume NG Flume是一个分布式.可靠.和高可用性的海量日志采集.聚合和传输的系统,支持在日志系统中定制各类数据发送方,用于收集数据:同时Flume提供对数据的简单处理,并写到各种数 ...

  5. Asp.Net Core 2.0 WebUploader FastDfs 文件上传 分段上传

    功能点: 1. 使用.net core 2.0 实现文件上传 2. 使用webuploader实现单文件,多文件上传 3. 使用webuploader实现大文件的分段上传. 4. 使用webuploa ...

  6. u-boot-2015.07 make xxx_config 分析

    1.u-boot编译脚本:mk.sh #! /bin/sh export PATH=$PATH:/opt/ti-sdk-am335x-evm-08.00.00.00/linux-devkit/sysr ...

  7. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  8. Struts2框架学习第三章——Struts2基础

    本章要点 —  Struts 1框架的基本知识 — 使用Struts 1框架开发Web应用 —  WebWork框架的基本知识 — 使用WebWork框架开发Web应用 — 在Eclipse中整合To ...

  9. Spark 基于物品的协同过滤算法实现

    J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...

  10. [Vue]实例化Vue时的两种挂载方式el与$mount

    Vue 的$mount()为手动挂载,在项目中可用于延时挂载(例如在挂载之前要进行一些其他操作.判断等),之后要手动挂载上.new Vue时,el和$mount并没有本质上的不同. 1.el Vue实 ...