以sample为例子
 [2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1]
 即:Rn[start,finish]=Rn[0,finish]-Rn[0,start-1]
 所以关键是给定一个X,求出Rn[0,X]
 现在假设X=10100100 
 这个X的二进制总共是8位,任何一个小于8位的二进制都小于X
 第一部分,求出长度为[0,7]区间内的二进制是RoundNumber的个数
  对于一个长度为Len的二进制(最高位为1),如何求出他的RoundNumbers呢(假设为用R(len)来表达),分为奇数和偶数两种情况
  1、奇数情况:在Len=2k+1的情况下,最高位为1,剩下2k位,至少需要k+1为0
   用C(m,n)表示排列组合数:从m个位置选出n个位置的方法
   R(len)=C(2k,k+1)+C(2k,k+2)+...+C(2k,2k).
   由于 A:C(2k,0)+C(2k,1)+...+C(2k,2k)=2^(2k)
     B:C(2k,0)=C(2k,2k), C(2k,1)=C(2k,2k-1) ,,C(2k,i)=C(2k,2k-i)
   于是  C(2k,0)+C(2k,1)+...+C(2k,2k)
    = C(2k,0)+C(2k,1)+...+C(2k,k)+C(2k,k+1)+C(2k,K+2)+...+C(2k,2k)
    = 2*R(len)+C(2k,k)
    =2^(2k)
    所以R(len)=1/2*{2^(2k)-C(2k,k)};
  2. 偶数情况 len=2*k,类似可以推到 R(len)=1/2*(2^(2k-1));
 第二部分,对于上面这个长度为8的例子:即X=10100100,首先如果本身是RoundNumbers,第二部分的结果总数+1
  第一部分已经将长度小于8的部分求出。现在要求长度=8的RoundNumber数目
  长度为8,所以第一个1不可改变
  现在到第二个1,如果Y是前缀如100*****的二进制,这个前缀下,后面取0和1必然小于X,已经有2个0,一个1,剩下的5个数字中至少需要2个0,
   所以把第二个1改为0:可以有C(5,2)+C(5,3)+C(5,4)+C(5,5)
  现在第三个1,也就是前最为101000**,同样求出,至少需要0个0就可,所以有C(2,0)+C(2,1)+C(2,2)个RoundNumbers
  。。。
  将所有除了第一个1以外的1全部变为0,如上算出有多少个RoundNumbers,结果相加(由于前缀不一样,所以后面不管怎么组合都是唯一的)

将第一部分和第二部分的结果相加,就是最后的结果了。
 精度要求方面,用int就可以了:two billion=20亿<2*1024*1024*1024=2^31,需用31位来表示数组,由于第一位总是1,所以求组合数的时候最多求30,C(30,k),k取值区间是[0,30],因为C(k,i)<2^k,所以结果用int表示就可以

Problem: 3252  User: ycdoit
Memory: 148K  Time: 0MS
Language: C++  Result: Accepted
#include<iostream>
using namespace std;
const int MS=31;
int C[MS][MS];        //[0,...30]
int power2[MS];        //1 2 4 8 ... 2^(MS-1)
int Binary[MS];
int Solve(int X){
    if(X<=1)    return 0;
    int i,j,k,n0,n1,Len,res=0;
    for(i=0;i<MS;++i)    Binary[i]=((power2[i]&X)!=0)?1:0;
    for(i=MS-1;i>=0 && Binary[i]==0;--i);    //停止的时候,i指向1        //总长度为i+1
    for(Len=i;Len>=1;--Len){        //求出 [1...i]的R(len)
        if(Len%2==1)    res+=(( power2[Len-1]-C[Len-1][(Len-1)/2])>>1);
        else    res+=(power2[Len-1]>>1);
    }
    for(j=i,n0=0,n1=0;j>=0;--j)    if(Binary[j])    ++n1;    else ++n0;
    if(n1<=n0)    ++res;
    for(j=i-1,n0=0,n1=1;j>=0;--j)    {
        if(Binary[j]){    //后面还有j位    第j位临时当做0
            for(k=j;k>=0 && k+n0+1>=j-k+n1;--k)        res+=C[j][k];
            ++n1;
        }
        else ++n0;
    }
    return res;
}
int main(){
    int i,j,Start,Finish;
    for(i=0;i<MS;++i)    C[i][0]=1,C[i][i]=1,power2[i]=(1<<i);
    for(i=2;i<MS;++i)    for(j=1;j<i;++j)    C[i][j]=C[i-1][j-1]+C[i-1][j];
    scanf("%d%d",&Start,&Finish);
    printf("%d\n",Solve(Finish)-Solve(Start-1));
    return 0;
}

poj 3252 Round Numbers 【推导·排列组合】的更多相关文章

  1. POJ 3252 Round Numbers(组合)

    题目链接:http://poj.org/problem?id=3252 题意: 一个数的二进制表示中0的个数大于等于1的个数则称作Round Numbers.求区间[L,R]内的 Round Numb ...

  2. [ACM] POJ 3252 Round Numbers (的范围内的二元0数大于或等于1数的数目,组合)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8590   Accepted: 3003 Des ...

  3. Round Numbers (排列组合)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7558   Accepted: 2596 Description The c ...

  4. POJ 3252 Round Numbers 组合数学

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13381   Accepted: 5208 Description The ...

  5. POJ 3252 Round Numbers

     组合数学...(每做一题都是这么艰难) Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7607 A ...

  6. poj 3252 Round Numbers(数位dp 处理前导零)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  7. POJ 3252 Round Numbers 数学题解

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  8. POJ 3252 Round Numbers(组合数学)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10223   Accepted: 3726 De ...

  9. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  10. POJ - 3252 - Round Numbers(数位DP)

    链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...

随机推荐

  1. mybatis系列-09-订单商品数据模型

    9.1     数据模型分析思路 1.每张表记录的数据内容 分模块对每张表记录的内容进行熟悉,相当 于你学习系统 需求(功能)的过程. 2.每张表重要的字段设置 非空字段.外键字段 3.数据库级别表与 ...

  2. C++实现ping功能

    今天接到需求要实现ping的功能,然后网上查了一些资料,对网络编程的一些函数熟悉了一下,虽然还有一些细节不清楚,但是慢慢积累. 要实现这样的功能: 基础知识 ping的过程是向目的IP发送一个type ...

  3. 微信分享,使用js,分享给朋友,朋友圈,QQ微博

    <script> var imgUrl = "http://www.baidu.com/img/bdlogo.gif"; var lineLink = "ht ...

  4. MapReduce TopK统计加排序

    Hadoop技术内幕中指出Top K算法有两步,一是统计词频,二是找出词频最高的前K个词.在网上找了很多MapReduce的Top K案例,这些案例都只有排序功能,所以自己写了个案例. 这个案例分两个 ...

  5. Sql建表语句

    create table dbo.[Finance_CityInfo] ([CityId] int identity(1,1) not null , [City] nvarchar(20) not n ...

  6. 搭建Titanium开发环境

    轻松制作 App 再也不是梦! Titanium Mobile 让你能够使用你所熟悉的 web 技术,制作出如同使用Objective-C 或 Java 写出的 Native App. 除了有多达三百 ...

  7. 软件工程个人作业——Agile Software Development读后感

    昨天利用了半天的时间看了下老师给的网页下的8篇文章和一段宣言,将感悟整理为下面的一篇博客. 首先先介绍一下这个网页.记得我们上学期上过一门课叫做面向对象建模方法,在这门课上刘超老师极力推荐的一本教材— ...

  8. POJ3126 Prime Path

    http://poj.org/problem?id=3126 题目大意:给两个数四位数m, n, m的位数各个位改变一位0 —— 9使得改变后的数为素数, 问经过多少次变化使其等于n 如: 10331 ...

  9. memcached全面剖析–3. memcached的删除机制和发展方向

    memcached在数据删除方面有效利用资源 数据不会真正从memcached中消失 上次介绍过, memcached不会释放已分配的内存.记录超时后,客户端就无法再看见该记录(invisible,透 ...

  10. 读Qt Demo——Basic Layouts Example

    此例程主要展示用代码方式创建控件并用Layout管理类对其进行布局: 例程来自Qt5.2,如过是默认安装,代码位于:C:\Qt\Qt5.2.0\5.2.0\mingw48_32\examples\wi ...