poj 3252 Round Numbers 【推导·排列组合】
以sample为例子
[2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1]
即:Rn[start,finish]=Rn[0,finish]-Rn[0,start-1]
所以关键是给定一个X,求出Rn[0,X]
现在假设X=10100100
这个X的二进制总共是8位,任何一个小于8位的二进制都小于X
第一部分,求出长度为[0,7]区间内的二进制是RoundNumber的个数
对于一个长度为Len的二进制(最高位为1),如何求出他的RoundNumbers呢(假设为用R(len)来表达),分为奇数和偶数两种情况
1、奇数情况:在Len=2k+1的情况下,最高位为1,剩下2k位,至少需要k+1为0
用C(m,n)表示排列组合数:从m个位置选出n个位置的方法
R(len)=C(2k,k+1)+C(2k,k+2)+...+C(2k,2k).
由于 A:C(2k,0)+C(2k,1)+...+C(2k,2k)=2^(2k)
B:C(2k,0)=C(2k,2k), C(2k,1)=C(2k,2k-1) ,,C(2k,i)=C(2k,2k-i)
于是 C(2k,0)+C(2k,1)+...+C(2k,2k)
= C(2k,0)+C(2k,1)+...+C(2k,k)+C(2k,k+1)+C(2k,K+2)+...+C(2k,2k)
= 2*R(len)+C(2k,k)
=2^(2k)
所以R(len)=1/2*{2^(2k)-C(2k,k)};
2. 偶数情况 len=2*k,类似可以推到 R(len)=1/2*(2^(2k-1));
第二部分,对于上面这个长度为8的例子:即X=10100100,首先如果本身是RoundNumbers,第二部分的结果总数+1
第一部分已经将长度小于8的部分求出。现在要求长度=8的RoundNumber数目
长度为8,所以第一个1不可改变
现在到第二个1,如果Y是前缀如100*****的二进制,这个前缀下,后面取0和1必然小于X,已经有2个0,一个1,剩下的5个数字中至少需要2个0,
所以把第二个1改为0:可以有C(5,2)+C(5,3)+C(5,4)+C(5,5)
现在第三个1,也就是前最为101000**,同样求出,至少需要0个0就可,所以有C(2,0)+C(2,1)+C(2,2)个RoundNumbers
。。。
将所有除了第一个1以外的1全部变为0,如上算出有多少个RoundNumbers,结果相加(由于前缀不一样,所以后面不管怎么组合都是唯一的)
将第一部分和第二部分的结果相加,就是最后的结果了。
精度要求方面,用int就可以了:two billion=20亿<2*1024*1024*1024=2^31,需用31位来表示数组,由于第一位总是1,所以求组合数的时候最多求30,C(30,k),k取值区间是[0,30],因为C(k,i)<2^k,所以结果用int表示就可以
Problem: 3252 User: ycdoit
Memory: 148K Time: 0MS
Language: C++ Result: Accepted
#include<iostream>
using namespace std;
const int MS=31;
int C[MS][MS]; //[0,...30]
int power2[MS]; //1 2 4 8 ... 2^(MS-1)
int Binary[MS];
int Solve(int X){
if(X<=1) return 0;
int i,j,k,n0,n1,Len,res=0;
for(i=0;i<MS;++i) Binary[i]=((power2[i]&X)!=0)?1:0;
for(i=MS-1;i>=0 && Binary[i]==0;--i); //停止的时候,i指向1 //总长度为i+1
for(Len=i;Len>=1;--Len){ //求出 [1...i]的R(len)
if(Len%2==1) res+=(( power2[Len-1]-C[Len-1][(Len-1)/2])>>1);
else res+=(power2[Len-1]>>1);
}
for(j=i,n0=0,n1=0;j>=0;--j) if(Binary[j]) ++n1; else ++n0;
if(n1<=n0) ++res;
for(j=i-1,n0=0,n1=1;j>=0;--j) {
if(Binary[j]){ //后面还有j位 第j位临时当做0
for(k=j;k>=0 && k+n0+1>=j-k+n1;--k) res+=C[j][k];
++n1;
}
else ++n0;
}
return res;
}
int main(){
int i,j,Start,Finish;
for(i=0;i<MS;++i) C[i][0]=1,C[i][i]=1,power2[i]=(1<<i);
for(i=2;i<MS;++i) for(j=1;j<i;++j) C[i][j]=C[i-1][j-1]+C[i-1][j];
scanf("%d%d",&Start,&Finish);
printf("%d\n",Solve(Finish)-Solve(Start-1));
return 0;
}
poj 3252 Round Numbers 【推导·排列组合】的更多相关文章
- POJ 3252 Round Numbers(组合)
题目链接:http://poj.org/problem?id=3252 题意: 一个数的二进制表示中0的个数大于等于1的个数则称作Round Numbers.求区间[L,R]内的 Round Numb ...
- [ACM] POJ 3252 Round Numbers (的范围内的二元0数大于或等于1数的数目,组合)
Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8590 Accepted: 3003 Des ...
- Round Numbers (排列组合)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7558 Accepted: 2596 Description The c ...
- POJ 3252 Round Numbers 组合数学
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13381 Accepted: 5208 Description The ...
- POJ 3252 Round Numbers
组合数学...(每做一题都是这么艰难) Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7607 A ...
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- POJ 3252 Round Numbers 数学题解
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- POJ 3252 Round Numbers(组合数学)
Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10223 Accepted: 3726 De ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- POJ - 3252 - Round Numbers(数位DP)
链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...
随机推荐
- mybatis系列-09-订单商品数据模型
9.1 数据模型分析思路 1.每张表记录的数据内容 分模块对每张表记录的内容进行熟悉,相当 于你学习系统 需求(功能)的过程. 2.每张表重要的字段设置 非空字段.外键字段 3.数据库级别表与 ...
- C++实现ping功能
今天接到需求要实现ping的功能,然后网上查了一些资料,对网络编程的一些函数熟悉了一下,虽然还有一些细节不清楚,但是慢慢积累. 要实现这样的功能: 基础知识 ping的过程是向目的IP发送一个type ...
- 微信分享,使用js,分享给朋友,朋友圈,QQ微博
<script> var imgUrl = "http://www.baidu.com/img/bdlogo.gif"; var lineLink = "ht ...
- MapReduce TopK统计加排序
Hadoop技术内幕中指出Top K算法有两步,一是统计词频,二是找出词频最高的前K个词.在网上找了很多MapReduce的Top K案例,这些案例都只有排序功能,所以自己写了个案例. 这个案例分两个 ...
- Sql建表语句
create table dbo.[Finance_CityInfo] ([CityId] int identity(1,1) not null , [City] nvarchar(20) not n ...
- 搭建Titanium开发环境
轻松制作 App 再也不是梦! Titanium Mobile 让你能够使用你所熟悉的 web 技术,制作出如同使用Objective-C 或 Java 写出的 Native App. 除了有多达三百 ...
- 软件工程个人作业——Agile Software Development读后感
昨天利用了半天的时间看了下老师给的网页下的8篇文章和一段宣言,将感悟整理为下面的一篇博客. 首先先介绍一下这个网页.记得我们上学期上过一门课叫做面向对象建模方法,在这门课上刘超老师极力推荐的一本教材— ...
- POJ3126 Prime Path
http://poj.org/problem?id=3126 题目大意:给两个数四位数m, n, m的位数各个位改变一位0 —— 9使得改变后的数为素数, 问经过多少次变化使其等于n 如: 10331 ...
- memcached全面剖析–3. memcached的删除机制和发展方向
memcached在数据删除方面有效利用资源 数据不会真正从memcached中消失 上次介绍过, memcached不会释放已分配的内存.记录超时后,客户端就无法再看见该记录(invisible,透 ...
- 读Qt Demo——Basic Layouts Example
此例程主要展示用代码方式创建控件并用Layout管理类对其进行布局: 例程来自Qt5.2,如过是默认安装,代码位于:C:\Qt\Qt5.2.0\5.2.0\mingw48_32\examples\wi ...