4591: [Shoi2015]超能粒子炮·改

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 178  Solved: 70
[Submit][Status][Discuss]

Description

曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加
强大的粒子流的神秘装置。超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升。它有三个参数n,k。它会
向编号为0到k的位置发射威力为C(n,k) mod 2333的粒子流。现在SHTSC给出了他的超能粒子炮·改的参数,让你求
其发射的粒子流的威力之和模2333。

Input

第一行一个整数t。表示数据组数。
之后t行,每行二个整数n,k。含义如题面描述。
k<=n<=10^18,t<=10^5

Output

t行每行一个整数,表示其粒子流的威力之和模2333的值。

Sample Input

1
5 5

Sample Output

32

HINT

 

Source

By 佚名上传

题解:

Lucas定理:C(n,k)%p=(C(n/p,k/p)*C(n%p,k%p))%p    (p为质数)

C(n,k)%2333=C(n/2333,k/2333)*C(n%2333,k%2333)

 
分两种部分考虑:
设k=k1*2333+k2 (0≤k1,k2)
1.对于k1部分
C(n,0)……C(n,2332)

=C(n/2333,0)*C(n%2333,0)+C(n/2333,0)*C(n%2333,1)+……+C(n/2333,0)*C(n%2333,2332) = C(n/2333,0)*(∑C(n%2333,i)(0≤i≤2332)) ==> 2333个
C(n,2333)……C(n,4665)

=C(n/2333,1)*C(n%2333,0)+C(n/2333,1)*C(n%2333,1)+……+C(n/2333,1)*C(n%2333,2332) = C(n/2333,1)*(∑C(n%2333,i)(0≤i≤2332)) ==> 2333个
C(n,4666)……C(n,6998)
=C(n/2333,2)*C(n%2333,0)+C(n/2333,2)*C(n%2333,1)+……+C(n/2333,2)*C(n%2333,2332) = C(n/2333,2)*(∑C(n%2333,i)(0≤i≤2332)) ==> 2333个
C(n,6999)……C(n,9331)
=C(n/2333,3)*C(n%2333,0)+C(n/2333,3)*C(n%2333,1)+……+C(n/2333,3)*C(n%2333,2332) = C(n/2332,3)*(∑C(n%2333,i)(0≤i≤2332)) ==> 2333个
…………
所以k1部分的总和sum=(∑C(n%2333,i)(0≤i≤2332))*(∑C(n/2333,j)(0≤j≤k1-1))
 
2.对于k2部分
C(n,k1*2333)……C(n,k)
=C(n/2333,k1)*C(n%2333,0)+C(n/2333,k1)*C(n%2333,1)+……+C(n/2333,k1)*C(n%2333,k%2333) ==> k%2333+1个
=C(n/2333,k1)*(∑C(n%2333,i)(0≤i≤k%2333))
 
由以上可得ans=(∑C(n%2333,i)(0≤i≤2332))*(∑C(n/2333,j)(0≤j≤k1-1))+C(n/2333,k1)*(∑C(n%2333,i)(0≤i≤k%2333))
 
预处理 S(n,k)=∑C(n,i)(0≤i≤k),化简ans=S(n%2333,2332)*(∑C(n/2333,j)(0≤j≤k1-1))+C(n/2333,k1)*S(n%2333,k%2333)
因为n%2333一定小于2333,所以可以用二维数组S(n,k)表示。但 ∑C(n/2333,j)(0≤j≤k1-1) 中n/2333可能很大,无法用二维数组存储,所以不把 ∑C(n/2333,j)(0≤j≤k1-1) 化简为 S(n/2333,k1-1)。但是可以发现 ∑C(n/2333,j)(0≤j≤k1-1) 与 要求的最终答案的公式的格式 ∑C(n,i)(0≤i≤k) 一样,所以可以递归求解。另外ans中的C(n/2333,k1)可以用Lucas定理求解。
 
 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MOD 2333
LL jc[MOD+],C[MOD+][MOD+],S[MOD+][MOD+];
LL read()
{
LL s=,fh=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
return s*fh;
}
LL mod(LL k,LL k1){return k-(k/k1)*k1;}
void cljc()
{
jc[]=1LL;
for(int i=;i<=MOD;i++)jc[i]=mod(jc[i-]*i,MOD);
}
void clC()
{
int i,j;
C[][]=1LL;
for(i=;i<=MOD;i++)
{
C[i][]=C[i][i]=1LL;
for(j=;j<i;j++)C[i][j]=mod(C[i-][j]+C[i-][j-],MOD);
}
for(i=;i<=MOD;i++)
{
S[i][]=1LL;
for(j=;j<=MOD;j++)S[i][j]=mod(S[i][j-]+C[i][j],MOD);
}
}
LL ksm(LL bb,LL pp,LL kk)
{
LL s=1LL;
while(pp>)
{
if(pp%!=)s=mod(s*bb,kk);
pp/=;
bb=mod(bb*bb,kk);
}
return s;
}
LL Comb(LL n,LL m,LL p)
{
if(m>n)return 0LL;
if(m>n-m)m=n-m;
return mod(jc[n]*ksm(mod(jc[m]*jc[n-m],p),p-,p),p);
}
LL Lucas(LL n,LL m,LL p)
{
if(m==0LL)return 1LL;
return mod(/*Comb(mod(n,p),mod(m,p),p)*/C[n%p][m%p]*Lucas(n/p,m/p,p),p);
}
LL getans(LL n,LL m,LL p)
{
if(m<0LL)return 0LL;
return mod(mod(S[mod(n,)][]*getans(n/,m/-,p),p)+mod(Lucas(n/,m/,p)*S[mod(n,)][mod(m,)],p),p);
}
int main()
{
LL T,n,k;
cljc();
clC();
T=read();
while(T--)
{
n=read();k=read();
printf("%lld\n",getans(n,k,MOD));
}
fclose(stdin);
fclose(stdout);
return ;
}

Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合的更多相关文章

  1. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  2. 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)

    题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  3. bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 先说说自己的想法: 从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置, ...

  4. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  5. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  6. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  7. P4345-[SHOI2015]超能粒子炮·改【Lucas定理,类欧】

    正题 题目链接:https://www.luogu.com.cn/problem/P4345 题目大意 \(T\)组询问,给出\(n,k\)求 \[\sum_{i=0}^{k}\binom{n}{i} ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

随机推荐

  1. Matlab计算矩阵间距离

    夜深人静时分,宿舍就我自己,只有蚊子陪伴着我,我慢慢码下这段文字............ 感觉知识结构不完善:上学期看论文,发现类间离散度矩阵和类内离散度矩阵,然后百度,找不到,现在学模式识别,见了, ...

  2. c++实现文本中英文单词和汉字字符的统计

    源代码下载:http://download.csdn.net/detail/nuptboyzhb/4987141 1.统计文本中汉字的频数,为后续的文本分类做基础.对于汉字的统计,需要判断读取的是否为 ...

  3. hibernate annotation注解 columnDefinition用法

    column注解中的columnDefinition属性用于覆盖数据库DDL中的语句:(MySql) @Column(columnDefinition = "int(11) DEFAULT ...

  4. Zookeeper + Hadoop + Hbase部署备忘

    网上类似的文章很多,本文只是记录下来备忘.本文分四大步骤: 准备工作.安装zookeeper.安装hadoop.安装hbase,下面分别详细介绍: 一 准备工作 1. 下载 zookeeper.had ...

  5. PHP session过期时间

    如何设置一个严格30分钟过期的Session 今天在我的微博(Laruence)上发出一个问题: 我在面试的时候, 经常会问一个问题: “如何设置一个30分钟过期的Session?”, 大家不要觉得看 ...

  6. 去除windows的Shift+Space 全角半角切换

    windows7下的输入法,有一个“全/半角切换”的快捷方式“Shift+Space”,我们可以通过以下方式查看到: “开始”->“控制面板”->“区域和语言”->“键盘和语言”-& ...

  7. Linux内核OOM机制的详细分析

    Linux 内核有个机制叫OOM killer(Out-Of-Memory killer),该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了防止内存耗尽而内核会把该进程杀掉.典型的 ...

  8. GB2312 简体中文编码表

    GB 2312中对所收汉字进行了“分区”处理,每区含有94个汉字/符号.这种表示方式也称为区位码. 01-09区为特殊符号. 16-55区为一级汉字,按拼音排序. 56-87区为二级汉字,按部首/笔画 ...

  9. NFC(8)关于新买的标签的格式化

    有多种方法格式化nfc标签设备. 如搜相关的手机上应用,在应用里选择格式类型 本文是用代码手动格式 public void writeNFCTag(Tag tag) { if (tag == null ...

  10. WIFI(1)WIFI直连 + socket 可以用来实现类似蓝牙传输数据的功能

    WIFI 直连简介 从Android4.0(API Level=14)开始,允许通过Wi-Fi模块在两个移动设备之间建立直接连接(这种技术称为Wi-Fi Direct),这种连接不需要无线路由作为中介 ...