leetcode 5 :Longest Palindromic Substring 找出最长回文子串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
翻译:
找出字符串s中最长的回文子串,字符串s的最长是1000,假设存在唯一的最长回文子串
法一:直接暴力破解
O(N3)的时间复杂度,运行超时:
Java程序:
public class Solution {
public String longestPalindrome(String s) {
// isPalindrome(s);
int sLen = s.length();
int maxLen = 0;
String maxSubStr="";
if(sLen==1) return s;
for(int i=0;i<sLen;i++){
for(int j=i+1;j<sLen-1;j++){
String subStr = s.substring(i,j+1);
if(isPalindrome(subStr)){
int tmp = subStr.length();
if(tmp >maxLen){
maxLen = tmp;
maxSubStr = subStr;
}
}
}
}
return maxSubStr;
}
boolean isPalindrome(String s){
int sLen = s.length();
if(sLen==1) return true;
for(int i = 0;i<sLen/2;i++){
char left = s.charAt(i);
char right = s.charAt(sLen - i -1);
if(left!=right)
return false;
}
return true;
}
}
法二:
网上找个O(N2)
定义一个dp矩阵 长度是字符串s的长度
初始值问题:
对角线设为1
为了防止回文序列长度是偶数要对s[i] 与s[i+1]相等作判断
若s[i]== s[j],则dp[i][j] = 1
对于s[i] 到s[j] 部分是否是回文字符串,需要考虑的是s[i+1]到s[j-1]部分是不是回文
可以转化为:若s[i] == s[j] ,则考虑s[i+1] 是否等于s[j-1],这里只需判断最近的一个就好了,因为这是从里面向外面循环的
对于dp矩阵的元素就是:若dp[i][j] = 1,则考虑d[i+1][j-1]是否等于 1,若d[i+1][j-1]=0,则 ,令dp[i][j]=0,里面不回文外面一定不回文。
public String longestPalindrome(String s){
if(s==null) return null;
if(s.length()<=1) return s;
int sLen = s.length();
int maxLen = 1;
String longest = null;
int[][] dp = new int[sLen][sLen];
// 对角线 1
for(int i=0;i<sLen;++i)
dp[i][i]=1;
// 相邻元素是否相等,主要是用来判断回文长度是偶数
for(int i=0;i<sLen-1;++i){
if(s.charAt(i)==s.charAt(i+1)){
dp[i][i+1] = 1;
longest = s.substring(i,i+2);
}
}
// 依次遍历所有可能长度的回文数
for(int k=2;k<sLen;++k){
for(int i=0;i<sLen-k;++i){
int j = i+k;
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i+1][j-1];
if(dp[i][j]==1 && k>maxLen)
longest = s.substring(i,j+1);
}else
dp[i][j]=0;
}
}
return longest; }
Time Limit Exceeded
Last executed input:
"cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
这里是全部一样的,执行超时。
增加一个集合用于判断字符串中元素全部一样的情况
运行依旧超时
public class Solution { String longestPalindrome(String s){
if(s==null) return null;
if(s.length()<=1) return s;
int sLen = s.length();
int maxLen = 1;
String longest = null;
TreeSet ts = new TreeSet();
for(int i=0;i<sLen;i++)
ts.add(s.charAt(i));
if(ts.size()==1) return s;
int[][] dp = new int[sLen][sLen];
// 对角线 1
for(int i=0;i<sLen;++i)
dp[i][i]=1;
// 相邻元素是否相等,主要是用来判断回文长度是偶数
for(int i=0;i<sLen-1;++i){
if(s.charAt(i)==s.charAt(i+1)){
dp[i][i+1] = 1;
longest = s.substring(i,i+2);
}
}
// 依次遍历所有可能长度的回文数
for(int k=2;k<sLen;++k){
for(int i=0;i<sLen-k;++i){
int j = i+k;
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i+1][j-1];
if(dp[i][j]==1 && k>maxLen)
longest = s.substring(i,j+1);
}else
dp[i][j]=0;
}
}
return longest; }
}
依旧超时:
Last executed input:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
法三:
时间复杂度:O(N2)
空间复制度:O(1)
也是来源于上面链接中的程序
这里的思想是:对应字符串中的i位置,向两侧依次判断是否相等,遇到第一个不相等的时候,结束判断
对应最大回文长度是偶数的,要先判断s[i]与s[i+1]是否相等后,再作上面类似的操作
这个AC了
class Solution{
String longestPalindrome(String s){
if(s.isEmpty()) return null;
if(s.length() == 1) return s;
String longest = s.substring(0,1);
for(int i=0;i<s.length();++i){
// 这里考虑的是回文长度是奇数的情况
String tmp = longestPalindromeCenter(s,i,i);
if(tmp.length() > longest.length())
longest = tmp;
//偶数时候
if(i<s.length() -1 && s.charAt(i)==s.charAt(i+1) ){
tmp = longestPalindromeCenter(s,i,i+1);
if(tmp.length() > longest.length())
longest = tmp;
}
}
return longest;
}
String longestPalindromeCenter(String s,int left,int right){
while(left>=0 && right< s.length() && s.charAt(left)== s.charAt(right)){
left--;
right++;
}// 以s[i] 为中心向两侧扩展,直到不满足回文的条件结束
return s.substring(left+1,right);// 结束的时候已经执行了left-- right++ 要去掉
}
}
上面的对于是偶数的可以不要判断,因为在下面的while中有先对这个两个起始点的判断了
对应的Python程序:
class Solution(object):
def longestPalindrome2(self, s):
longest = ''
if len(s)<=1 : return s
sLen = len(s)
for i in range(sLen):
tmp = self.longestPalindromeCenter(s,i,i)
if len(tmp) > len(longest):
longest = tmp
# if i<sLen-1 and s[i]==s[i+1]:
# tmp = self.longestPalindromeCenter(s, i, i+1)
# if len(tmp)>len(longest):
# longest = tmp
# if i<sLen-1 and s[i]==s[i+1]:
tmp = self.longestPalindromeCenter(s, i, i+1)
if len(tmp)>len(longest):
longest = tmp
return longest def longestPalindromeCenter(self, s,left,right):
while(left>=0 and right<len(s) and s[left]==s[right]):
left-=1
right+=1
return s[(left+1):right] def longestPalindrome(self, s):
if len(s)<=1: return s
sLen = len(s)
dp = [[0 for _ in range(sLen)] for _ in range(sLen)]
longest=""
for i in range(sLen):
dp[i][i] = 1
for i in range(sLen-1):
if s[i]==s[i+1]:
dp[i][i+1] = 1
longest = s[i:(i+2)]
for k in range(2,sLen):
for i in range(0,sLen-k):
j = i + k
if s[i]==s[j]:
dp[i][j]=dp[i+1][j-1]
if dp[i][j]==1 and len(s[i:(j+1)])>len(longest):
longest = s[i:(j+1)]
else:
dp[i][j] = 0
return longest
依旧是根据中心点查找的AC,下面一个时间超时
附几个让你超时的测试字符串:
String s1="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
String s2="cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc";
String s3 = "vmqjjfnxtyciixhceqyvibhdmivndvxyzzamcrtpywczjmvlodtqbpjayfchpisbiycczpgjdzezzprfyfwiujqbcubohvvyakxfmsyqkysbigwcslofikvurcbjxrccasvyflhwkzlrqowyijfxacvirmyuhtobbpadxvngydlyzudvnyrgnipnpztdyqledweguchivlwfctafeavejkqyxvfqsigjwodxoqeabnhfhuwzgqarehgmhgisqetrhuszoklbywqrtauvsinumhnrmfkbxffkijrbeefjmipocoeddjuemvqqjpzktxecolwzgpdseshzztnvljbntrbkealeemgkapikyleontpwmoltfwfnrtnxcwmvshepsahffekaemmeklzrpmjxjpwqhihkgvnqhysptomfeqsikvnyhnujcgokfddwsqjmqgsqwsggwhxyinfspgukkfowoxaxosmmogxephzhhy";
leetcode 5 :Longest Palindromic Substring 找出最长回文子串的更多相关文章
- LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2
https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...
- leetcode:Longest Palindromic Substring(求最大的回文字符串)
Question:Given a string S, find the longest palindromic substring in S. You may assume that the maxi ...
- PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- 最长回文子串-LeetCode 5 Longest Palindromic Substring
题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- 【LeetCode】Longest Palindromic Substring 解题报告
DP.KMP什么的都太高大上了.自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. Yo ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
- 求最长回文子串 - leetcode 5. Longest Palindromic Substring
写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了.... 前后切了一百零几道leetcode的题(sol ...
- LeetCode(4) || Longest Palindromic Substring 与 Manacher 线性算法
LeetCode(4) || Longest Palindromic Substring 与 Manacher 线性算法 题记 本文是LeetCode题库的第五题,没想到做这些题的速度会这么慢,工作之 ...
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
随机推荐
- 使用awstats分析iis站点的日志
环境:win7 + iis7 + perl(ActivePerl-5.20.1.2000) + awstats 7.3 一.找到iis日志所在目录 建议全部都打勾 二.安装perl AWStats是p ...
- 51nod1270 数组的最大代价(简单dp)
---恢复内容开始--- 1270 数组的最大代价 题目来源: HackerRank 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 数组A包含N个 ...
- c#读写注册表示例分享
c#读写注册表示例,示例中有详细注释. 代码: //写注册表RegistryKey regWrite;//往HKEY_CURRENT_USER主键里的Software子键下写一个名为“Test”的子键 ...
- windows bat脚本实现ftp自动下载 删除
现在有一个需求就是把远程某个文件下面的图片,下载到本地,并且删除下载成功的的文件,而且远程目录下的那个图片会随时增加.假设一下如果所有的脚本都写好了,那么就需要调用windows上的计划任务定时执行脚 ...
- 内部技术分享的 PPT
本文的基础是搞了一次内部的技术分享,在此也分享一下本次的PPT的一些内容.先列一下大概内容吧. EF-Code First API(WCF.WebAPI) Xaml MVVM AOP Xamarin. ...
- Posix 信号量
作用 信号量的值为0或正整数,就像红灯与绿灯,用于指示当前是否可以接受任务. 信号量对进程和线程都适用. gcc编译时需加-lpthread 基本函数 信号量的相关函数与标准文件函数非常相似,可以理解 ...
- matlab实现不动点迭代、牛顿法、割线法
不动点迭代 function xc = fpi( g, x0, tol ) x(1) = x0; i = 1; while 1 x(i + 1) = g(x(i)); if(abs(x(i+1) - ...
- c++线程传参问题
std::thread可以和任何可调用类型一起工作,可调用对象和函数带有参数时,可以简单地将参数传递给std::thread的构造函数 例如: #include<iostream> #in ...
- html和css中的技巧
1:标签不要忘记带点 2:div是否成对的出现. 3.body 前面不能加点 4.在写css时记住一定要带上class的命名这样就不会出现重复的 5.出现文字的时候下面有下划线或虚线的时候,用padd ...
- cocos3.2版本中的一些新特性
1.设置屏幕分辨率的大小,需要手动添加: 2.去掉了所有CC开头的命名: 3.所有的单例(以前是采用shared开头方法),全部改为getInstance(); 4.cocos3.x以上的版本支持C+ ...