leetcode 5 :Longest Palindromic Substring 找出最长回文子串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
翻译:
找出字符串s中最长的回文子串,字符串s的最长是1000,假设存在唯一的最长回文子串
法一:直接暴力破解
O(N3)的时间复杂度,运行超时:
Java程序:
public class Solution {
public String longestPalindrome(String s) {
// isPalindrome(s);
int sLen = s.length();
int maxLen = 0;
String maxSubStr="";
if(sLen==1) return s;
for(int i=0;i<sLen;i++){
for(int j=i+1;j<sLen-1;j++){
String subStr = s.substring(i,j+1);
if(isPalindrome(subStr)){
int tmp = subStr.length();
if(tmp >maxLen){
maxLen = tmp;
maxSubStr = subStr;
}
}
}
}
return maxSubStr;
}
boolean isPalindrome(String s){
int sLen = s.length();
if(sLen==1) return true;
for(int i = 0;i<sLen/2;i++){
char left = s.charAt(i);
char right = s.charAt(sLen - i -1);
if(left!=right)
return false;
}
return true;
}
}
法二:
网上找个O(N2)
定义一个dp矩阵 长度是字符串s的长度
初始值问题:
对角线设为1
为了防止回文序列长度是偶数要对s[i] 与s[i+1]相等作判断
若s[i]== s[j],则dp[i][j] = 1
对于s[i] 到s[j] 部分是否是回文字符串,需要考虑的是s[i+1]到s[j-1]部分是不是回文
可以转化为:若s[i] == s[j] ,则考虑s[i+1] 是否等于s[j-1],这里只需判断最近的一个就好了,因为这是从里面向外面循环的
对于dp矩阵的元素就是:若dp[i][j] = 1,则考虑d[i+1][j-1]是否等于 1,若d[i+1][j-1]=0,则 ,令dp[i][j]=0,里面不回文外面一定不回文。
public String longestPalindrome(String s){
if(s==null) return null;
if(s.length()<=1) return s;
int sLen = s.length();
int maxLen = 1;
String longest = null;
int[][] dp = new int[sLen][sLen];
// 对角线 1
for(int i=0;i<sLen;++i)
dp[i][i]=1;
// 相邻元素是否相等,主要是用来判断回文长度是偶数
for(int i=0;i<sLen-1;++i){
if(s.charAt(i)==s.charAt(i+1)){
dp[i][i+1] = 1;
longest = s.substring(i,i+2);
}
}
// 依次遍历所有可能长度的回文数
for(int k=2;k<sLen;++k){
for(int i=0;i<sLen-k;++i){
int j = i+k;
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i+1][j-1];
if(dp[i][j]==1 && k>maxLen)
longest = s.substring(i,j+1);
}else
dp[i][j]=0;
}
}
return longest; }
Time Limit Exceeded
Last executed input:
"cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
这里是全部一样的,执行超时。
增加一个集合用于判断字符串中元素全部一样的情况
运行依旧超时
public class Solution { String longestPalindrome(String s){
if(s==null) return null;
if(s.length()<=1) return s;
int sLen = s.length();
int maxLen = 1;
String longest = null;
TreeSet ts = new TreeSet();
for(int i=0;i<sLen;i++)
ts.add(s.charAt(i));
if(ts.size()==1) return s;
int[][] dp = new int[sLen][sLen];
// 对角线 1
for(int i=0;i<sLen;++i)
dp[i][i]=1;
// 相邻元素是否相等,主要是用来判断回文长度是偶数
for(int i=0;i<sLen-1;++i){
if(s.charAt(i)==s.charAt(i+1)){
dp[i][i+1] = 1;
longest = s.substring(i,i+2);
}
}
// 依次遍历所有可能长度的回文数
for(int k=2;k<sLen;++k){
for(int i=0;i<sLen-k;++i){
int j = i+k;
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i+1][j-1];
if(dp[i][j]==1 && k>maxLen)
longest = s.substring(i,j+1);
}else
dp[i][j]=0;
}
}
return longest; }
}
依旧超时:
Last executed input:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
法三:
时间复杂度:O(N2)
空间复制度:O(1)
也是来源于上面链接中的程序
这里的思想是:对应字符串中的i位置,向两侧依次判断是否相等,遇到第一个不相等的时候,结束判断
对应最大回文长度是偶数的,要先判断s[i]与s[i+1]是否相等后,再作上面类似的操作
这个AC了
class Solution{
String longestPalindrome(String s){
if(s.isEmpty()) return null;
if(s.length() == 1) return s;
String longest = s.substring(0,1);
for(int i=0;i<s.length();++i){
// 这里考虑的是回文长度是奇数的情况
String tmp = longestPalindromeCenter(s,i,i);
if(tmp.length() > longest.length())
longest = tmp;
//偶数时候
if(i<s.length() -1 && s.charAt(i)==s.charAt(i+1) ){
tmp = longestPalindromeCenter(s,i,i+1);
if(tmp.length() > longest.length())
longest = tmp;
}
}
return longest;
}
String longestPalindromeCenter(String s,int left,int right){
while(left>=0 && right< s.length() && s.charAt(left)== s.charAt(right)){
left--;
right++;
}// 以s[i] 为中心向两侧扩展,直到不满足回文的条件结束
return s.substring(left+1,right);// 结束的时候已经执行了left-- right++ 要去掉
}
}
上面的对于是偶数的可以不要判断,因为在下面的while中有先对这个两个起始点的判断了
对应的Python程序:
class Solution(object):
def longestPalindrome2(self, s):
longest = ''
if len(s)<=1 : return s
sLen = len(s)
for i in range(sLen):
tmp = self.longestPalindromeCenter(s,i,i)
if len(tmp) > len(longest):
longest = tmp
# if i<sLen-1 and s[i]==s[i+1]:
# tmp = self.longestPalindromeCenter(s, i, i+1)
# if len(tmp)>len(longest):
# longest = tmp
# if i<sLen-1 and s[i]==s[i+1]:
tmp = self.longestPalindromeCenter(s, i, i+1)
if len(tmp)>len(longest):
longest = tmp
return longest def longestPalindromeCenter(self, s,left,right):
while(left>=0 and right<len(s) and s[left]==s[right]):
left-=1
right+=1
return s[(left+1):right] def longestPalindrome(self, s):
if len(s)<=1: return s
sLen = len(s)
dp = [[0 for _ in range(sLen)] for _ in range(sLen)]
longest=""
for i in range(sLen):
dp[i][i] = 1
for i in range(sLen-1):
if s[i]==s[i+1]:
dp[i][i+1] = 1
longest = s[i:(i+2)]
for k in range(2,sLen):
for i in range(0,sLen-k):
j = i + k
if s[i]==s[j]:
dp[i][j]=dp[i+1][j-1]
if dp[i][j]==1 and len(s[i:(j+1)])>len(longest):
longest = s[i:(j+1)]
else:
dp[i][j] = 0
return longest
依旧是根据中心点查找的AC,下面一个时间超时
附几个让你超时的测试字符串:
String s1="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
String s2="cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc";
String s3 = "vmqjjfnxtyciixhceqyvibhdmivndvxyzzamcrtpywczjmvlodtqbpjayfchpisbiycczpgjdzezzprfyfwiujqbcubohvvyakxfmsyqkysbigwcslofikvurcbjxrccasvyflhwkzlrqowyijfxacvirmyuhtobbpadxvngydlyzudvnyrgnipnpztdyqledweguchivlwfctafeavejkqyxvfqsigjwodxoqeabnhfhuwzgqarehgmhgisqetrhuszoklbywqrtauvsinumhnrmfkbxffkijrbeefjmipocoeddjuemvqqjpzktxecolwzgpdseshzztnvljbntrbkealeemgkapikyleontpwmoltfwfnrtnxcwmvshepsahffekaemmeklzrpmjxjpwqhihkgvnqhysptomfeqsikvnyhnujcgokfddwsqjmqgsqwsggwhxyinfspgukkfowoxaxosmmogxephzhhy";
leetcode 5 :Longest Palindromic Substring 找出最长回文子串的更多相关文章
- LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2
https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...
- leetcode:Longest Palindromic Substring(求最大的回文字符串)
Question:Given a string S, find the longest palindromic substring in S. You may assume that the maxi ...
- PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- 最长回文子串-LeetCode 5 Longest Palindromic Substring
题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- 【LeetCode】Longest Palindromic Substring 解题报告
DP.KMP什么的都太高大上了.自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. Yo ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
- 求最长回文子串 - leetcode 5. Longest Palindromic Substring
写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了.... 前后切了一百零几道leetcode的题(sol ...
- LeetCode(4) || Longest Palindromic Substring 与 Manacher 线性算法
LeetCode(4) || Longest Palindromic Substring 与 Manacher 线性算法 题记 本文是LeetCode题库的第五题,没想到做这些题的速度会这么慢,工作之 ...
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
随机推荐
- javascript中for-in的用法
for(var 变量名 in object) alert(变量名[第n个]) : 如果object是josn对象的话,变量名就是属性名 如果object是数组的话,变量名就是数字下标 例子:JOSN对 ...
- silverlight视频、音频
几天发现MediaElement播放不了wav格式的音频文件,在网上找到一篇解决的文章: http://www.cnblogs.com/rupeng/archive/2011/02/20/195936 ...
- PHP 5.3.X 连接MS SQL Server php_mssql.dll
在网上搜索了一下PHP 5.3.X 连接SQL Server的办法,有人也遇到了这个问题 原来PHP 团队在PHP 5.3 中移除了SQL Server的驱动和库,而微软自己开发了针对PHP的SQL驱 ...
- 关于iOS6应用中第三方类库不支持armv7s的问题解决
今天编译ios6+cocos2d v2 .1 beta2制作的游戏,出现下面的错误: ld: file is universal (3 slices) but does not contain a(n ...
- How to changes to Table & EDT Relations[AX2012]
Well I hope everyone is having a fine week so far. Oh Wednesdays, the furthermost point between two ...
- 安装360后,visual studio 经常报各种莫名其妙的错误的解决方案
安装360后,visual studio 经常报各种莫名其妙的错误,每次都要查找错误的解决方案 而且网上关于这个的好少,以后只要碰到了这种情况我就记录下吧 今天碰到的情况是打开WCF服务时出现 ...
- 第一个C#应用 【搜索软件】
搜索软件V1.0 [附软件截图][http://pan.baidu.com/s/1mihEbe4] 设备搜索:支持广播搜索[local search],指定ip[range search]搜索,直接w ...
- CPU 时间片 分时 轮转调度
时间片即CPU分配给各个程序的时间,每个线程被分配一个时间段,称作它的时间片,即该进程允许运行的时间,使各个程序从表面上看是同时进行的.如果在时间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进 ...
- mac os快捷键
选中一个词,使用control+command+d,可以启用词典 option+command+d,隐藏/显示 doc command + k terminal 清除历史记录 control + up ...
- StackExchange.Redis的使用
StackExchange.Redis介绍 有需要了解的和基础的使用可以参考:http://www.cnblogs.com/bnbqian/p/4962855.html StackExchange.R ...