题意:从S走到D,能不能恰好用T时间。

析:这个题时间是恰好,并不是少于T,所以用DFS来做,然后要剪枝,不然会TEL,我们这样剪枝,假设我们在(x,y),终点是(ex,ey),

那么从(x, y)到(ex, ey),要么时间正好是T-你已经走过的时间,要么要向别的地方先拐一下,以凑出这个正好时间,既然要拐一下,那么一定要回来,

所以时间肯定得是偶数,要不然完不成(回不来),

所以(t - abs(ex-x) - abs(ey-y) - cnt ),如果是奇数就剪枝。然而用C++交就TLE,用G++就AC。。。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
using namespace std ; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int mod = 1e9 + 7;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int t;
char s[10][10];
int vis[10][10];
int sx, sy, ex, ey; bool dfs(int r, int c, int cnt){
if(cnt > t) return false;
if(r == ex && c == ey && cnt == t) return true;
if((t - abs(ex-r) - abs(ey-c) - cnt) & 1) return false; for(int i = 0; i < 4; ++i){
int x = dr[i] + r;
int y = dc[i] + c;
if(!is_in(x, y) || vis[x][y] || s[x][y] == 'X') continue;
vis[x][y] = 1;
if(x == ex && ey == y && cnt + 1 == t) return true;
if((t - abs(ex-x) - abs(ey-y) - cnt -1) & 1) continue;
if(dfs(x, y, cnt+1)) return true;
vis[x][y] = 0;
}
return false;
} int main(){
while(scanf("%d %d %d", &n, &m, & t) == 3){
if(!n && !m && !t) break;
for(int i = 0; i < n; ++i)
scanf("%s", s[i]);
for(int i = 0; i < n; ++i)
for(int j = 0; j < m; ++j)
if(s[i][j] == 'S') sx = i, sy = j;
else if(s[i][j] == 'D') ex = i, ey = j;
memset(vis, 0, sizeof(vis));
vis[sx][sy] = 1;
if(dfs(sx, sy, 0)) puts("YES");
else puts("NO");
}
return 0;
}

HDU 1010 Tempter of the Bone (DFS+剪枝)的更多相关文章

  1. HDU 1010 Tempter of the Bone --- DFS

    HDU 1010 题目大意:给定你起点S,和终点D,X为墙不可走,问你是否能在 T 时刻恰好到达终点D. 参考: 奇偶剪枝 奇偶剪枝简单解释: 在一个只能往X.Y方向走的方格上,从起点到终点的最短步数 ...

  2. hdu.1010.Tempter of the Bone(dfs+奇偶剪枝)

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  3. hdu 1010 Tempter of the Bone 奇偶剪枝

      如果所给的时间(步数) t 小于最短步数path,那么一定走不到. 若满足t>path.但是如果能在恰好 t 步的时候,走到出口处.那么(t-path)必须是二的倍数. 关于第二种方案的解释 ...

  4. (step4.3.1) hdu 1010(Tempter of the Bone——DFS)

    题目大意:输入三个整数N,M,T.在接下来的N行.M列会有一系列的字符.其中S表示起点,D表示终点. .表示路 . X表示墙...问狗能有在T秒时到达D.如果能输出YES, 否则输出NO 解题思路:D ...

  5. HDU 1010 Tempter of the Bone(DFS+奇偶剪枝)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 题目大意: 输入 n m t,生成 n*m 矩阵,矩阵元素由 ‘.’ 'S' 'D' 'X' 四 ...

  6. hdu - 1010 Tempter of the Bone (dfs+奇偶性剪枝) && hdu-1015 Safecracker(简单搜索)

    http://acm.hdu.edu.cn/showproblem.php?pid=1010 这题就是问能不能在t时刻走到门口,不能用bfs的原因大概是可能不一定是最短路路径吧. 但是这题要过除了细心 ...

  7. HDU 1010 Tempter of the Bone DFS(奇偶剪枝优化)

    需要剪枝否则会超时,然后就是基本的深搜了 #include<cstdio> #include<stdio.h> #include<cstdlib> #include ...

  8. HDU 1010 Tempter of the Bone (DFS+可行性奇偶剪枝)

    <题目链接> 题目大意:一个迷宫,给定一个起点和终点,以及一些障碍物,所有的点走过一次后就不能再走(该点会下陷).现在问你,是否能从起点在时间恰好为t的时候走到终点. 解题分析:本题恰好要 ...

  9. HDOJ.1010 Tempter of the Bone (DFS)

    Tempter of the Bone [从零开始DFS(1)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1010 Tem ...

  10. HDU 1010 Tempter of the Bone【DFS经典题+奇偶剪枝详解】

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

随机推荐

  1. Android系列之Fragment(一)----Fragment加载到Activity当中

    Android上 的界面展示都是通过Activity实现的,Activity实在是太常用了.但是Activity也有它的局限性,同样的界面在手机上显示可能很好看, 在平板上就未必了,因为平板的屏幕非常 ...

  2. cocoapods 终极方案

    最近各种错误, 全部刷新 再说 sudo gem install -n /usr/local/bin cocoapods $ sudo gem update --system // 先更新gem $ ...

  3. 【转】pdf 中如何把几页缩小成一页打印

    我用的是Foxit PDF Reader,可以这样设置:文件-打印-打印处理下的页面排列选择“在每张纸上放置多页”-选择每页版数即可. 如果你用的是Adobe Reader,也可以自己找一下,看是否有 ...

  4. 【转】cocos2d-x与ios内存管理分析(在游戏中减少内存压力)

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2D开发网–Cocos2Dev.com,谢谢! 原文地址: http://www.cocos2dev.com/?p=281 注:自己以前也写过coco ...

  5. java.lang.Throwable 异常/深入

    有几个现象是需要总结的: -------------------------------------- 在java语言中,错误类的基类是java.lang.Error,异常类的基类是java.lang ...

  6. Android-监听sdcard状态

    public class MyService extends Service { private static final String TAG = "MyService"; Fi ...

  7. Tombstone crash

    首先,android平台应用程序可能产生以下四种crash:App层:Force close crashANR crashNative层:Tombstone crashKernel层:Kernel p ...

  8. JS:实用功能

    ylbtech-jQuery:函数-导航 添加样式(addClass).移除样式(removeClass) 轮替函数(toggle()) 选项拼加 全选 网页刷点器 jQuery:3.1,添加样式(a ...

  9. 《C++ primer》--第12章

    习题12.7 什么是封装?为什么封装是有用的? 解答: 封装是一种将低层次的元素组合起来形成新的.高层次实体的技术.例如,函数是封装的一种形式:函数所执行的细节行为被封装在函数本身这个更大的实体中:类 ...

  10. 获取手机内存\可用内存\单个APP运行内存

    /** 手机总内存 */ private String getTotalMemory() { // 系统内存信息文件 String str1 = "/proc/meminfo"; ...