Highways

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/G

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9

1 5

0 0

3 2

4 5

5 1

0 4

5 2

1 2

5 3

3

1 3

9 7

1 2

Sample Output

1 6

3 7

4 9

5 7

8 3

##题意:

求最小的花费使得各点联通. 初始时有一些已建的边.
最后要输出增加的边的端点.


##题解:

最小生成树.
把已建的边的长度赋成零后跑一遍kruskal,同时把添加到的长度不为零的边输出.

这题1000ms的时限,POJ上C++超时,G++只要400ms,太可怕了.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 755
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right,cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

LL kruskal()

{

LL ans = 0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans += (LL)road[i].cost;

if(road[i].cost != 0)

printf("%d %d\n", road[i].left, road[i].right);

p[x]=y;

}

}

return ans;

}

int x[maxn],y[maxn];

int dis[maxn][maxn];

int main(int argc, char const *argv[])

{

//IN;

scanf("%d", &n);
m = 0;
//memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%d %d", &x[i],&y[i]);
} for(int i=1; i<=n; i++) {
for(int j=i; j<=n; j++) {
dis[i][j] = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
}
} int q; scanf("%d", &q);
while(q--) {
int x,y; scanf("%d %d", &x,&y);
dis[x][y] = dis[y][x] = 0;
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = dis[i][j];
}
} int ans=kruskal(); return 0;

}

POJ 1751 Highways (最小生成树)的更多相关文章

  1. POJ 1751 Highways (最小生成树)

    Highways Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  2. POJ 1751 Highways(最小生成树Prim普里姆,输出边)

    题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...

  3. POJ 1751 Highways 【最小生成树 Kruskal】

    Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23070   Accepted: 6760   Speci ...

  4. POJ 1751 Highways(最小生成树&Prim)题解

    思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...

  5. POJ 1751 Highways (kruskal)

    题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...

  6. (poj) 1751 Highways

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor ...

  7. POJ 2485 Highways(最小生成树+ 输出该最小生成树里的最长的边权)

                                                                                                         ...

  8. POJ 2485 Highways 最小生成树 (Kruskal)

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...

  9. POJ 1751 Highways (ZOJ 2048 ) MST

    http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...

随机推荐

  1. 自定义View(2)canas绘制基本图形的示例

    效果 代码: void drawSample(Canvas canvas) { /* * 方法 说明 drawRect 绘制矩形 drawCircle 绘制圆形 drawOval 绘制椭圆 drawP ...

  2. bzoj3994

    智商太低了 详细题解在这里http://blog.csdn.net/zmoiynlp/article/details/45176129 ; ..max] of longint; g:..max] of ...

  3. Ajax、Comet与Websocket

    从 http 协议说起 1996年IETF  HTTP工作组发布了HTTP协议的1.0版本 ,到现在普遍使用的版本1.1,HTTP协议经历了17 年的发展.这种分布式.无状态.基于TCP的请求/响应式 ...

  4. android webview js alert对话框 不能弹出 解决办法

    在配置了webview的 setting属性后,以前设置的都是可以直接弹出来的,今天写一个小demo时候莫名其妙的发现alert怎么也出来,即使设置了这么多也不行: webSettings.setJa ...

  5. ORACLE 如何定位消耗资源的SQL

    在分析SQL性能的时候,经常需要确定资源消耗多的SQL,总结如下: 1 查看值得怀疑的SQLselect substr(to_char(s.pct, '99.00'), 2) || '%' load, ...

  6. (2)Spring集成Quartz定时任务框架介绍和Cron表达式详解

    在JavaEE系统中,我们会经常用到定时任务,比如每天凌晨生成前天报表,每一小时生成汇总数据等等.我们可以使用java.util.Timer结合java.util.TimerTask来完成这项工作,但 ...

  7. sql给数据库加锁问题

    加锁是在操作数据时进行了,不能事后加锁. 例: begin   tran           insert   表   with(TABLOCKX)     --加锁           (字段列表) ...

  8. Oracle 一次 锁表 处理小记

    同事说测试库上的一张表被锁了. 不能执行DML 操作. 锁表的准确说法应该是阻塞.之前的一遍blog里有说明: 锁 死锁 阻塞Latch 等待 详解 http://blog.csdn.net/tian ...

  9. 给Java新手的一些建议----Java知识点归纳(Java基础部分)

    写这篇文章的目的是想总结一下自己这么多年来使用java的一些心得体会,主要是和一些java基础知识点相关的,所以也希望能分享给刚刚入门的Java程序员和打算入Java开发这个行当的准新手们,希望可以给 ...

  10. asp.net夜话之十一:web.config详解

    转:http://blog.csdn.net/zhoufoxcn/article/details/3265141 在开发中经常会遇到这样的情况,在部署程序时为了保密起见并不将源代码随项目一同发布,而我 ...