Highways

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/G

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9

1 5

0 0

3 2

4 5

5 1

0 4

5 2

1 2

5 3

3

1 3

9 7

1 2

Sample Output

1 6

3 7

4 9

5 7

8 3

##题意:

求最小的花费使得各点联通. 初始时有一些已建的边.
最后要输出增加的边的端点.


##题解:

最小生成树.
把已建的边的长度赋成零后跑一遍kruskal,同时把添加到的长度不为零的边输出.

这题1000ms的时限,POJ上C++超时,G++只要400ms,太可怕了.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 755
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right,cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

LL kruskal()

{

LL ans = 0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans += (LL)road[i].cost;

if(road[i].cost != 0)

printf("%d %d\n", road[i].left, road[i].right);

p[x]=y;

}

}

return ans;

}

int x[maxn],y[maxn];

int dis[maxn][maxn];

int main(int argc, char const *argv[])

{

//IN;

scanf("%d", &n);
m = 0;
//memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%d %d", &x[i],&y[i]);
} for(int i=1; i<=n; i++) {
for(int j=i; j<=n; j++) {
dis[i][j] = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
}
} int q; scanf("%d", &q);
while(q--) {
int x,y; scanf("%d %d", &x,&y);
dis[x][y] = dis[y][x] = 0;
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = dis[i][j];
}
} int ans=kruskal(); return 0;

}

POJ 1751 Highways (最小生成树)的更多相关文章

  1. POJ 1751 Highways (最小生成树)

    Highways Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  2. POJ 1751 Highways(最小生成树Prim普里姆,输出边)

    题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...

  3. POJ 1751 Highways 【最小生成树 Kruskal】

    Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23070   Accepted: 6760   Speci ...

  4. POJ 1751 Highways(最小生成树&Prim)题解

    思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...

  5. POJ 1751 Highways (kruskal)

    题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...

  6. (poj) 1751 Highways

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor ...

  7. POJ 2485 Highways(最小生成树+ 输出该最小生成树里的最长的边权)

                                                                                                         ...

  8. POJ 2485 Highways 最小生成树 (Kruskal)

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...

  9. POJ 1751 Highways (ZOJ 2048 ) MST

    http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...

随机推荐

  1. 传感器(2)常用api简介及列出当前设备支持的传感器代码

    Android SDK提供了Android sensor framework,可以用来访问当前Android设备内置的传感器. ASF提供了很多类和接口,可以帮助我们完成各种与传感器有关的任务. 例如 ...

  2. git设置对比工具

    windows下设置 beyond compare 3 为 git  的对比工具. 首先需要先安装 beyond compare 3 工具,切记需要安装安装版的,不要搞绿色版的. mac下使用 Kal ...

  3. JPA和Hibernate的区别

    JPA Java Persistence API,是Java EE 5的标准ORM接口,也是ejb3规范的一部分. Hibernate,当今很流行的ORM框架,是JPA的一个实现,但是其功能是JPA的 ...

  4. setBackgroundDrawable和setBackgroundColor的用法

        1.设置背景图片,图片来源于drawable: flightInfoPanel.setBackgroundDrawable(getResources().getDrawable(R.drawa ...

  5. bzoj3632

    裸的最大团,随机化大法好 多次随机出一个选择顺序然后贪心即可 ..,..] of boolean; a:..] of longint; v:..] of boolean; n,m,i,j,x,y,an ...

  6. UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!

    这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...

  7. 面向函数范式编程(Functional programming)

    函数编程(简称FP)不只代指Haskell Scala等之类的语言,还表示一种编程思维,软件思考方式,也称面向函数编程. 编程的本质是组合,组合的本质是范畴Category,而范畴是函数的组合. 首先 ...

  8. UVA 1663 Purifying Machine (二分图匹配,最大流)

    题意: 给m个长度为n的模板串,模板串由0和1和*三种组成,且每串至多1个*,代表可0可1.模板串至多匹配2个串,即*号改成0和1,如果没有*号则只能匹配自己.问:模板串可以缩减为几个,同样可以匹配原 ...

  9. ssl选购

    上机实践,参考了: http://www.lovelucy.info/nginx-ssl-certificate-https-website.html http://nginx.org/cn/docs ...

  10. 使用mp4v2将H264+AAC合成mp4文件

    录制程序要添加新功能:录制CMMB电视节目,我们的板卡发送出来的是RTP流(H264视频和AAC音频),录制程序要做的工作是: (1)接收并解析RTP包,分离出H264和AAC数据流: (2)将H26 ...