Children of the Candy Corn
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8046   Accepted: 3518

Description

The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombies, chainsaw-wielding psychopaths, hippies, and other terrors on their quest to find the exit.

One popular maze-walking strategy guarantees that the visitor will eventually find the exit. Simply choose either the right or left wall, and follow it. Of course, there's no guarantee which strategy (left or right) will be better, and the path taken is seldom the most efficient. (It also doesn't work on mazes with exits that are not on the edge; those types of mazes are not represented in this problem.)

As the proprieter of a cornfield that is about to be converted into a maze, you'd like to have a computer program that can determine the left and right-hand paths along with the shortest path so that you can figure out which layout has the best chance of confounding visitors.

Input

Input to this problem will begin with a line containing a single integer n indicating the number of mazes. Each maze will consist of one line with a width, w, and height, h (3 <= w, h <= 40), followed by h lines of w characters each that represent the maze layout. Walls are represented by hash marks ('#'), empty space by periods ('.'), the start by an 'S' and the exit by an 'E'.

Exactly one 'S' and one 'E' will be present in the maze, and they will always be located along one of the maze edges and never in a corner. The maze will be fully enclosed by walls ('#'), with the only openings being the 'S' and 'E'. The 'S' and 'E' will also be separated by at least one wall ('#').

You may assume that the maze exit is always reachable from the start point.

Output

For each maze in the input, output on a single line the number of (not necessarily unique) squares that a person would visit (including the 'S' and 'E') for (in order) the left, right, and shortest paths, separated by a single space each. Movement from one square to another is only allowed in the horizontal or vertical direction; movement along the diagonals is not allowed.

Sample Input

2
8 8
########
#......#
#.####.#
#.####.#
#.####.#
#.####.#
#...#..#
#S#E####
9 5
#########
#.#.#.#.#
S.......E
#.#.#.#.#
#########

Sample Output

37 5 5
17 17 9
#include<iostream>
#include<stdio.h>
using namespace std;
int w,h,ex,ey,sx,sy;
int map[100][100],can[100][100];
struct vid{ int x,y,step;
}queue[5000];
int zan[4][2]={{-1,0},{0,1},{1,0},{0,-1}};
int dirl[4][2]={0,-1,-1,0,0,1,1,0},dirr[4][2]={0,1,1,0,0,-1,-1,0};
int dfsr(int dstep,int x,int y,int di )
{
int i,temp1,temp2; for(i=0;i<4;i++)
{
temp1=x+dirr[i][0];
temp2=y+dirr[i][1]; if((temp1>=0)&&(temp1<h)&&(temp2>=0)&&(temp2<w))
{
if(dfsr(dstep+1,x+dirr[i][0],y+dirr[i][1],i))
return dstep;
else
return 0;
} }
return 0; }
int dfsl(int dstep,int x,int y,int di )
{ int i,temp1,temp2; for(i=0;i<4;i++)
{
temp1=x+dirl[i][0];
temp2=y+dirl[i][1]; if((temp1>=0)&&(temp1<h)&&(temp2>=0)&&(temp2<w))
{
if(dfsl(dstep+1,temp1,temp2,i))
return dstep;
else
return 0;
} } return 0;
}
int bfs()
{ if (sx == ex && sy == ey)
{ return 1;
}
int t,ww,x,y,t1,t2;
t=ww=1;
queue[t].x=sx;
queue[t].y=sy;
queue[t].step=0;
can[sx][sy]=1;
while(t<=ww&&!can[ex][ey])
{ x=queue[t].x;
y=queue[t].y;
for(int i=0;i<4;i++)
if((!map[x+zan[i][0]][y+zan[i][1]])&&(!can[x+zan[i][0]][y+zan[i][1]]))
{ t1=x+zan[i][0];
t2=y+zan[i][1];
if(t1>=0&&(t1<h)&&(t2>=0)&&(t2<w)&&(!map[t1][t2])&&(!can[t1][t2]))
{ queue[++ww].x=t1;
queue[ww].y=t2;
queue[ww].step=queue[t].step+1;
can[t1][t2]=1;
}
}
t++;
}
return queue[ww].step+1;
}
int main ()
{
int t;
char c;
scanf("%d",&t);
getchar();
while(t--)
{ scanf("%d%d",&w,&h);
getchar();
for(int i=0;i<h;i++)
{
for(int j=0;j<w;j++)
{
can[i][j]=0;
c=getchar();
if(c=='#')
map[i][j]=1;
else if(c=='.')
map[i][j]=0;
else if(c=='S')
{
map[i][j]=0;
sx=i,sy=j;
}
else
if(c=='E')
{
map[i][j]=0;
ex=i;ey=j;
}
}
getchar();
}
// init();
// dfsr();
// printf("%d ",bfs());
printf("%d %d %d\n",dfsl(0,sx,sy,0)+1,dfsr(0,sx,sy,0)+1,bfs());
} return 0;
}
												

poj3083的更多相关文章

  1. ACM/ICPC 之 靠墙走-DFS+BFS(POJ3083)

    //POJ3083 //DFS求靠左墙(右墙)走的路径长+BFS求最短路 //Time:0Ms Memory:716K #include<iostream> #include<cst ...

  2. POJ3083——Children of the Candy Corn(DFS+BFS)

    Children of the Candy Corn DescriptionThe cornfield maze is a popular Halloween treat. Visitors are ...

  3. POJ3083 Children of the Candy Corn(搜索)

    题目链接. 题意: 先沿着左边的墙从 S 一直走,求到达 E 的步数. 再沿着右边的墙从 S 一直走,求到达 E 的步数. 最后求最短路. 分析: 最短路好办,关键是沿着墙走不太好想. 但只要弄懂如何 ...

  4. poj3083走玉米地问题

    走玉米地迷宫,一般有两种简单策略,遇到岔路总是优先沿着自己的左手方向,或者右手方向走.给一个迷宫,给出这两种策略的步数,再给出最短路径的长度. ######### #.#.#.#.# S....... ...

  5. POJ3083 Children of the Candy Corn(Bfs + Dfs)

    题意:给一个w*h的迷宫,其中矩阵里面 S是起点,E是终点,“#”不可走,“.”可走,而且,S.E都只会在边界并且,不会在角落,例如(0,0),输出的话,每组数据就输出三个整数,第一个整数,指的是,以 ...

  6. POJ-3083 Children of the Candy Corn (BFS+DFS)

    Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...

  7. DFS+BFS(POJ3083)

    题目链接:http://poj.org/problem?id=3083 解题报告:这个题目,搜最短路,没有什么问题.优先走左边,走右边,有很多说法,思路大概都相同,都是记录当前朝向,根据数学公式(i+ ...

  8. poj3083 Children of the Candy Corn BFS&&DFS

    Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11215   Acce ...

  9. 基础BFS+DFS poj3083

    //满基础的一道题 //最短路径肯定是BFS. //然后靠右,靠左,就DFS啦 //根据前一个状态推出下一个状态,举靠左的例子,如果一开始是上的话,那么他的接下来依次就是 左,上 , 右 , 下 // ...

随机推荐

  1. C#开发COM+组件和ActiveX控件

    using System.Reflection; using System.Runtime.CompilerServices; using System.Runtime.InteropServices ...

  2. PHP最佳实践(译)

    原文: PHP Best Practices-A short, practical guide for common and confusing PHP tasks 译者:youngsterxyf 最 ...

  3. Android下高斯模糊的算法和demo

    采用纯java和RenderScript两种方式来做高斯算法. 也可以用NDK来做,想试试的可以参考: http://stackoverflow.com/questions/2067955/fast- ...

  4. SpringMVC——注解的使用与结果跳转方式

    1.项目结构 2.源代码 package com.zhengbin.controller; import java.io.IOException; import javax.servlet.Servl ...

  5. MySQL 5.6 复制:GTID 的优点和限制(第一部分)

    全局事务标示符(Global Transactions Identifier)是MySQL 5.6复制的一个新特性.它为维护特定的复制拓扑结构下服务器的DBA们大幅度改善他们的工作状况提供了多种可能性 ...

  6. 如何在linux中搭建JEECMS系统

    本人正在进行jeecms二次开发,但因win7系统中的Tomcat无法使用,就想起在linux下安装,但去jeecms的官方网站,没有给出在linux下安装的方法,确实苦恼,经过一天的研究,终于大功告 ...

  7. Oracle 创建和使用视图

    一.what(什么是视图?) 1.视图是一种数据库对象,是从一个或者多个数据表或视图中导出的虚表,视图所对应的数据并不真正地存储在视图中,而是存储在所引用的数据表中,视图的结构和数据是对数据表进行查询 ...

  8. ioctl用法详解 (网络)

    本函数影响由fd参数引用的一个打开的文件. #include#include int ioctl( int fd, int request, .../* void *arg */ );返回0:成功   ...

  9. UVA 10054 The Necklace

    完全就是哭瞎的节奏···QAQ 又是图论··· 题意:有一种项链,每个珠子上有两种颜色,相同颜色的两颗珠子的两头相连,如果能连成环输出珠子的顺序,不能连成环输出"some beads may ...

  10. JAX-WS

    JAX-WS(Java API for XML Web Services)规范是一组XML web services的JAVA API,JAX-WS允许开发者可以选择RPC-oriented或者mes ...