Schwarz导数与凹凸性
命题 1: 定义区间$I$上的Schwarz导数
$$D^{2}f(x)=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}$$
若$D^{2}f(x)\geq 0$则$f(x)$为$I$上的下凸函数,若$D^{2}f(x)\leq 0$,则$f(x)$为$I$上的上凸函数.
证明: 任意$\varepsilon >0$,构造辅助函数
$$F(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right]+\varepsilon (x-a)(x-b)$$
经计算有
\begin{align*}
D^{2}F(x)&=\lim_{h\to 0}\frac{F(x+h)+F(x-h)-2F(x)}{h^{2}}\\
&=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}+2\varepsilon\\
&\geq 2\varepsilon
\end{align*}
构造的辅助函数满足$F(a)=F(b)=0$且为$[a,b]$上的连续函数, 我们证明其最大值必然在端点处取到, 否则设$x_{0}\in (a,b)$且$F(x_{0})=\max_{x\in [a,b]}\{F(x)\}$
$$\frac{F(x_{0}+h)+F(x_{0}-h)-2F(x_{0})}{h^{2}}\leq 0$$
取$h\to 0$得$D^{2}F(x_{0})\leq 0$与$D^{2}F(x)\geq 2\varepsilon$矛盾. 故$F(x)\leq F(a)=0$即
$$f(x)\leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-\varepsilon (x-a)(x-b)$$
令$\varepsilon \to 0$,有
$$f(x)\leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$$
取$x=\frac{a+b}{2}$, 便得
$$f\left(\frac{a+b}{2}\right)\leq \frac{1}{2}f(a)+\frac{1}{2}f(b)$$
$f(x)$为$I$上下凸函数, 反之证明方法类似只需把$\varepsilon$改为负的即可.
命题 2: 若$f(x)$既为$I$上的下凸函数又为上凸函数,则$f(x)$为$I$上的线性函数.
证明: 设$x=\lambda_{1}a+\lambda_{2}b$,其中$\lambda_{1}+\lambda_{2}=1$.那么
$$f(x)=f(\lambda_{1}a+\lambda_{2}b)=\lambda_{1}f(a)+\lambda_{2}(b)$$
经简单计算
$$\frac{f(x)-f(a)}{x-a}=\frac{(\lambda_{1}-1)f(a)+\lambda_{2} f(b)}{(\lambda_{1}-1)a+\lambda_{2}b}=\frac{f(b)-f(a)}{b-a}$$
故
$$f(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$$
Schwarz导数与凹凸性的更多相关文章
- matlab练习程序(多边形顶点凹凸性)
生成简单多边形后,有时还需要对多边形各顶点的凹凸性做判断. 先计算待处理点与相邻点的两个向量,再计算两向量的叉乘,根据求得结果的正负可以判断凹凸性. 结果为负则为凹顶点,为正则为凸顶点. 凹顶点用o表 ...
- PCL—低层次视觉—点云分割(基于凹凸性)
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...
- 装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
- 【ML数学知识】极大似然估计
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...
- Matlab随笔之插值与拟合(上)
原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注 ...
- [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计
[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...
- Alink漫谈(十一) :线性回归 之 L-BFGS优化
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0 ...
- Ideas and Tricks
1.树上拓扑排序计数 结论$\dfrac{n!}{\prod\limits_{i=1}^n size_i}$ 对于节点$i$,其子树随意排序的结果是$size[i]!$ 但$i$需要排在第一位,只有$ ...
随机推荐
- 【再见RMQ】NYOJ-119-士兵杀敌(三),区间内大小差值
[题目链接:NYOJ-119] 思路:转自 点我 ,讲的挺好. #include <cstdio> #include <math.h> #define max(a,b) ((a ...
- HDU 5114 Collision
Collision Time Limit: 15000/15000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) Total ...
- HDU 5776 sum (BestCoder Round #85 A) 简单前缀判断+水题
分析:就是判断简单的前缀有没有相同,注意下自身是m的倍数,以及vis[0]=true; #include <cstdio> #include <cstdlib> #includ ...
- HDU-4861 Couple doubi
http://acm.hdu.edu.cn/showproblem.php?pid=4861 Couple doubi Time Limit: 2000/1000 MS (Java/Others) ...
- AutoLayout UITableViewCell 动态高度
从这里http://www.cnblogs.com/liandwufan/p/4516956.html?utm_source=tuicool 转载过来的 -(UITableViewCell*)tabl ...
- selenium打开带有扩展的chrome
每当用跑用例失败的时候,第一反应就是查看元素定位是不是正确,帮助定位的扩展是必不可少的,但是selenium一般打开的是不带扩展的干净的浏览器,如果操作步骤很长的话,就得手动去执行直到那一步去检查元素 ...
- Apriori学习笔记
Apriori算法是一种挖掘关联规则的频繁项集算法,是由Rakesh Agrawal和Ramakrishnan Srikant两位在1994年提出的布尔关联规则的频繁项集挖掘算法.算法的名字" ...
- 浅谈JavaScript中的原型模式
在JavaScript中创建对象由很多种方式,如工厂模式.构造函数模式.原型模式等: <pre name="code" class="html">/ ...
- 【暑假】[实用数据结构]UVa11991 Easy Problem from Rujia Liu?
UVa11991 Easy Problem from Rujia Liu? 思路: 构造数组data,使满足data[v][k]为第k个v的下标.因为不是每一个整数都会出现因此用到map,又因为每 ...
- 内核源码分析之进程调度机制(基于3.16-rc4)
进程调度所使用到的数据结构: 1.就绪队列 内核为每一个cpu创建一个进程就绪队列,该队列上的进程均由该cpu执行,代码如下(kernel/sched/core.c). DEFINE_PER_CPU_ ...