题意

有 \(n\) 个球球,每个球球有一个属性值 。一个合法的排列满足不存在相邻两个球球的属性值乘积是完全平方数。求合法的排列数量对 \(10^9+7\) 取膜。

\(n\le 300\) (本题数据范围可扩大至 \(n\le 3000\)) 。

题解

首先很显然,如果 \(xy,yz\) 是完全平方数,那么 \(xz\) 也是完全平方数。这样我们可以将球球分成若干组,每组的两两乘积都是完全平方数。

那么问题转化为有若干球球,每个球球一个颜色,求满足相同颜色的球球不相邻的排列数。

下设 \(a_i\) 为第 \(i\) 种颜色的球球个数, \(m\) 为颜色个数。

我们考虑容斥。我们将连续颜色相同的小球球合并成一个大球球,设 \(b_i\) 为 合并后第 \(i\) 种颜色的球球的数量,那么答案即为 \(b\) 的可重排列数乘上每种颜色内部排列数 \(\displaystyle \frac{(\sum_{i=1}^mb_i)!}{\prod_{i=1}^mb_i!} \cdot \prod_{i=1}^m a_i!\) ,容斥系数用插板法计算,为 \(\displaystyle \prod_{i=1}^m (-1)^{a_i-b_i} \cdot \binom{a_i-1}{b_i-1}\) 。

考虑如何计算这个式子。设 \(s=\sum_{i=1}^m b_i\) ,那么答案式子可转化为:

\[(-1)^{n-s} s!\prod_{i=1}^{m}\frac{\binom{a_i-1}{b_i-1}\cdot a_i!}{b_i!}
\]

我们考虑用 dp 计算后半部分式子。设 \(f(i,j)\) 表示前 \(i\) 个数, \(\sum_{x=1}^i b_x=j\) 的方案数。枚举 \(b_i=k\) 转移:

\[f(i,j)=\sum_{k=1}^{\min(a_i,j)}f(i-1,j-k)\cdot \frac{\binom{a_i-1}{k-1}\cdot a_i!}{k!}
\]

最后按上面的式子枚举 \(s\) 容斥统计答案即可。

dp 的复杂度看上去像 \(n^3\) ,实际上理性分析,复杂度为 \(\sum_{i=1}^n a_i (\sum_{j=1}^i a_j) =O(n^2)\) .

code

#include<cstdio>
#include<cmath>
typedef long long ll;
const int N=305,Mod=1e9+7;
int t[N],a[N],f[N][N],n,m,fac[N],inv[N],ans,v;
inline int mul(int x, int y) {
return 1ll*x*y%Mod;
}
inline int po(int x, int y)
{
int r=1;
while(y)
{
if(y&1) r=mul(r,x);
x=mul(x,x), y>>=1;
}
return r;
}
inline int C(int x, int y) {
return mul(mul(fac[x],inv[y]),inv[x-y]);
}
int main()
{
scanf("%d",&n);
for(int i=1,x,j;i<=n;++i)
{
scanf("%d",&x);
for(j=1;j<=m;++j)
if(1ll*t[j]*x==(ll)sqrt(1ll*t[j]*x)*(ll)sqrt(1ll*t[j]*x))
{
++a[j];
break;
}
if(j>m) t[++m]=x,++a[m];
}
fac[0]=inv[0]=1;
for(int i=1;i<=n;++i) fac[i]=mul(fac[i-1],i);
inv[n]=po(fac[n],Mod-2);
for(int i=n-1;i;--i) inv[i]=mul(inv[i+1],i+1);
int ans=0,v=0;
f[0][0]=1;
for(int i=1;i<=m;++i)
{
v+=a[i];
for(int j=1;j<=v;++j)
for(int k=1;k<=a[i]&&k<=j;++k)
f[i][j]=(f[i][j]+mul(f[i-1][j-k],mul(C(a[i]-1,k-1),inv[k])))%Mod;
}
for(int i=1;i<=n;++i)
{
int t=mul(fac[i],f[m][i]);
(n-i&1)?ans=(ans+Mod-t)%Mod:ans=(ans+t)%Mod;
}
for(int i=1;i<=m;++i) ans=mul(ans,fac[a[i]]);
printf("%d",ans);
}

【Luogu4448】 [AHOI2018初中组]球球的排列的更多相关文章

  1. TYVJ4623 球球大作战·生存

    时间: 500ms / 空间: 65536KiB / Java类名: Main 背景 小天很喜欢玩球球大作战这个游戏,大家也应该都玩过.游戏规则是:移动自己的球,移动到别人的球(一定要比自己的球小)的 ...

  2. 【204】显示3D大球球

    1. 光滑球  From Jan 28, 2016    2. 大球球 https://www.revolvermaps.com/?target=enlarge&i=0xoqkxnu52c&a ...

  3. java实现简单窗体小游戏----球球大作战

    java实现简单窗体小游戏----球球大作战需求分析1.分析小球的属性: ​ 坐标.大小.颜色.方向.速度 2.抽象类:Ball ​ 设计类:BallMain—创建窗体 ​ BallJPanel—画小 ...

  4. Creator3D 守护你的球球—UV动画与天空盒

    1 游戏预览 在线体验地址:http://example.creator-star.cn/follo-ball/ 2 场景物体 场景物体 新建场景后,引擎会为我们创建默认的摄像机和灯光,这个我们就不介 ...

  5. 第四届西安邮电大学acm-icpc校赛 猜球球

    题目描述 六一到了,为了庆祝这个节日,好多商家都推出了很多好玩的小游戏.Tongtong看到了一个猜球球的游戏,有n种除了颜色之外完全相同的球,商家从中拿出来一个球球放到了箱子里,已知第i种颜色的球出 ...

  6. luogu P4448 [AHOI2018初中组]球球的排列

    这道题我一上来只会80 还是要感谢题解区大佬题解的帮助 先考虑若\(xy,xz\)为完全平方数,则\(yz\)也为完全平方数,因为\(xy*xz=x^2yz\)为完全平方数,除掉\(x^2\)就行了 ...

  7. js实现动态球球背景

    document.getElementsByTagName("body")[0].style.backgroundColor="#000" //构造函数 fun ...

  8. [ACM] 1007 -球球方格

    与兔子方格类似,不过一秒走一格: 输入 代码 #include<iostream> using namespace std; int main(void) { int test_count ...

  9. hdoj薛猫猫杯程序设计网络赛1003 球球大作战

    思路: 二分,check函数不是很好写. 实现: 1. #include <bits/stdc++.h> using namespace std; typedef long long ll ...

随机推荐

  1. 《实战Java高并发程序设计》读书笔记二

    第二章  Java并行程序基础 1.线程的基本操作 线程:进程是线程的容器,线程是轻量级进程,是程序执行的最小单位,使用多线程而不用多进程去进行并发程序设计是因为线程间的切换和调度的成本远远的小于进程 ...

  2. 洛谷P1346 电车(需要稍加思索的最短路)

    题目描述 在一个神奇的小镇上有着一个特别的电车网络,它由一些路口和轨道组成,每个路口都连接着若干个轨道,每个轨道都通向一个路口(不排除有的观光轨道转一圈后返回路口的可能).在每个路口,都有一个开关决定 ...

  3. C++11常用特性介绍——constexpr变量

    一.constexpr变量 1)将变量声明为constexpr类型以便由编译器来验证变量的值是否为一个常量表达式,声明为constexpr的变量一定是一个常量,而且必须用常量表达式来初始化,如: in ...

  4. vue.js 第八课

    列表渲染 v-for template v-for 数组变动检查 变异方法 替换数组 track-by track-by $index 问题 对象 v-for 值域 v-for 显示过滤/排序的结果 ...

  5. 针对sklearn.svm中的"dual_coef_"理解

    1.决策函数的表达式 公式: 其中: 2.SVM经过训练后,所得到的"dual_coef_" 其实"dual_coef_"就是"ai*yi" ...

  6. 自定义Redis作为Session存储服务提供

    之前看网上介绍可使用Redis自定义Session托管,使用第三方的Harbour.RedisSessionStateStore GitHub:https://github.com/TheCloudl ...

  7. 「luogu3402」【模板】可持久化并查集

    「luogu3402」[模板]可持久化并查集 传送门 我们可以用一个可持久化数组来存每个节点的父亲. 单点信息更新和查询就用主席树多花 一个 \(\log\) 的代价来搞. 然后考虑如何合并两个点. ...

  8. MinGW x64 for Windows安装

    1. 百度搜索MinGW gcc 或直接登录 MinGW gcc官网 http://www.mingw.org/ 2.选择左侧download链接,进入下载页面 3.下载安装包mingw-get-se ...

  9. let const var 比较说明

    现在先来做两道练习题 for(var i=0;i<10;i++){ var a='a' let b = 'b' } console.log(a) console.log(b) for(var i ...

  10. navicat连接数据库报错:未发现数据源名称并且未指定默认驱动程序

    解决方法:安装navicat自带sqlncli_x64.msi,在navicat安装目录下