Tian Ji -- The Horse Racing

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 17699   Accepted: 5461

Description

Here is a famous story in Chinese history.

That was about 2300 years ago. General Tian Ji was a
high official in the country Qi. He likes to play horse racing with the
king and others.

Both of Tian and the king have three horses in different classes,
namely, regular, plus, and super. The rule is to have three rounds in a
match; each of the horses must be used in one round. The winner of a
single round takes two hundred silver dollars from the loser.

Being the most powerful man in the country, the king has so nice
horses that in each class his horse is better than Tian's. As a result,
each time the king takes six hundred silver dollars from Tian.

Tian Ji was not happy about that, until he met Sun Bin, one of the
most famous generals in Chinese history. Using a little trick due to
Sun, Tian Ji brought home two hundred silver dollars and such a grace in
the next match.

It was a rather simple trick. Using his regular class horse race
against the super class from the king, they will certainly lose that
round. But then his plus beat the king's regular, and his super beat the
king's plus. What a simple trick. And how do you think of Tian Ji, the
high ranked official in China?

Were Tian Ji lives in nowadays, he will certainly laugh at himself.
Even more, were he sitting in the ACM contest right now, he may discover
that the horse racing problem can be simply viewed as finding the
maximum matching in a bipartite graph. Draw Tian's horses on one side,
and the king's horses on the other. Whenever one of Tian's horses can
beat one from the king, we draw an edge between them, meaning we wish to
establish this pair. Then, the problem of winning as many rounds as
possible is just to find the maximum matching in this graph. If there
are ties, the problem becomes more complicated, he needs to assign
weights 0, 1, or -1 to all the possible edges, and find a maximum
weighted perfect matching...

However, the horse racing problem is a very special case of
bipartite matching. The graph is decided by the speed of the horses -- a
vertex of higher speed always beat a vertex of lower speed. In this
case, the weighted bipartite matching algorithm is a too advanced tool
to deal with the problem.

In this problem, you are asked to write a program to solve this special case of matching problem.

Input

The
input consists of up to 50 test cases. Each case starts with a positive
integer n ( n<=1000) on the first line, which is the number of
horses on each side. The next n integers on the second line are the
speeds of Tian's horses. Then the next n integers on the third line are
the speeds of the king's horses. The input ends with a line that has a
single `0' after the last test case.

Output

For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.

Sample Input

3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0

Sample Output

200
0
0
/*
贪心策略:
1,如果田忌的最快马快于齐王的最快马,则两者比。
(因为若是田忌的别的马很可能就赢不了了,所以两者比)
2,如果田忌的最快马慢于齐王的最快马,则用田忌的最慢马和齐王的最快马比。
(由于所有的马都赢不了齐王的最快马,所以用损失最小的,拿最慢的和他比)
3,若相等,则比较田忌的最慢马和齐王的最慢马
3.1,若田忌最慢马快于齐王最慢马,两者比。
(田忌的最慢马既然能赢一个就赢呗,而且齐王的最慢马肯定也得有个和他比,所以选最小的比他快得。)
3.2,其他,则拿田忌的最慢马和齐王的最快马比。
(反正所有的马都比田忌的最慢马快了,所以这匹马必输,选贡献最大的,干掉齐王的最快马)
*/ #include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<vector>
#include<stack>
#include<math.h>
#define mod 998244353
#define ll long long
#define MAX 0x3f3f3f3f
using namespace std;
int a[],b[];
int n;
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
scanf("%d",&b[i]);
sort(a,a+n,cmp);
sort(b,b+n,cmp);
int mx_a=,mn_a=n-,mx_b=,mn_b=n-,ans=;
while(n--)
{
if(a[mx_a]>b[mx_b])//田忌最快的马比齐王最快的马快
{
ans=ans+;
mx_a++;
mx_b++;
}
else if(a[mx_a]<b[mx_b])//田忌最快的马比齐王最快的马慢
{
ans=ans-;
mn_a--;
mx_b++;
}
else//快马速度相等,比较慢马
{
if(a[mn_a]>b[mn_b])//田忌最慢的马比齐王最慢的马快
{
ans=ans+;
mn_a--;
mn_b--;
}
else if(a[mn_a]<b[mx_b])//必输,用田忌慢马消耗齐王快马
{
ans=ans-;
mn_a--;
mx_b++;
}
else//相等,还是用田忌慢马消耗快马
{
//ans=ans-200;
mn_a--;
mx_b++;
}
}
}
printf("%d\n",ans);
}
}

POJ 2287 田忌赛马的更多相关文章

  1. POJ 2287 田忌赛马 贪心算法

    田忌赛马,大致题意是田忌和国王赛马,赢一局得200元,输一局输掉200元,平局则财产不动. 先输入一个整数N,接下来一行是田忌的N匹马,下一行是国王的N匹马.当N为0时结束. 此题为贪心算法解答,有两 ...

  2. poj 2287(贪心)

    Tian Ji -- The Horse Racing Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 12490   Acc ...

  3. POJ 2287 Tian Ji -- The Horse Racing(贪心)

    题意:田忌和齐王有n匹马,进行n局比赛,每局比赛输者给胜者200,问田忌最多能得多少钱. 分析:如果田忌最下等的马比齐王最下等的马好,是没必要拿最下等的马和齐王最好的马比的.(最上等马同理) 因此,如 ...

  4. (贪心5.1.2)POJ 2287 Tian Ji -- The Horse Racing

    /* * POJ_2287.cpp * * Created on: 2013年10月9日 * Author: Administrator */ #include <iostream> #i ...

  5. poj 2287 动态规划

    用贪心简单证明之后就是一个从两头取的动态规划 #include <iostream> #include <cstring> #include <cstdio> #i ...

  6. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  7. BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][S ...

  8. bzoj 2287: 【POJ Challenge】消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  9. [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物

    题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...

随机推荐

  1. Sping IOC容器

    Sping IOC容器 package servlet; import org.springframework.context.ApplicationContext; import org.sprin ...

  2. ApacheDbUtilsUpdate

    ApacheDbUtilsUpdate package p1; import com.DataSourceUtil; import org.apache.commons.dbutils.QueryRu ...

  3. js中各种类型转换为Boolean类型

    数据类型  转换为true的值  转换为false的值 Boolean  true  false String  任何非空字符串  空字符串 Number  任何非零数字值(包括无穷大) 0和null ...

  4. FFmpeg——命令笔记

    1. 获取 dshow设备列表 ffmpeg -list_devices true -f dshow -i dummy 2. 通过UDP流推ts文件: ffmpeg.exe -re -i zhen.t ...

  5. SELinux永久关闭

    目录 SELinux永久关闭 参考 SELinux三种模式 永久关闭方法 SELinux永久关闭

  6. 配置VSCode开发Vue项目

    一.安装VSCode.NodeJS VSCode:https://code.visualstudio.com/ NodeJS:https://nodejs.org/en/ 二.打开VSCode,安装常 ...

  7. nginx_1_初始nginx

    一.nginx简介: nginx是一个性能优秀的web服务器,同时还提供反向代理,负载均衡,邮件代理等功能.是俄罗斯人用C语言开发的开源软件. 二.安装nginx step1:安装依赖库 pcre(支 ...

  8. C#Winfrom实现Skyline画直线功能

    C#Winfrom实现Skyline画直线功能 前言: 这里记录了我在学习Skyline二次开发中所遇到的问题,适合刚接触Skyline二次开发的同学查看使用,从逻辑到代码逐一详解,但是还是重在理解, ...

  9. python表白代码1.0桃心输出

    python爱心表达函数初级版本:def my_heart(a,b=2): print("\n".join(["".join([(a[(x-y) % len(a ...

  10. (十四)登陆注册 逻辑二 前端globalData的使用 和 Storage

                        我们在点击登录的时候  成功之后跳转到home 一 在全局的app.js里会有一个 globalData 因为还有其他页面也要使用 共有的数据 所有用到  gl ...