PytorchMNIST(使用Pytorch进行MNIST字符集识别任务)
都说MNIST相当于机器学习界的Hello World。最近加入实验室,导师给我们安排了一个任务,但是我才刚刚入门呐!!没办法,只能从最基本的学起。
Pytorch是一套开源的深度学习张量库。或者我倾向于把它当成一个独立的深度学习框架。为了写这么一个"Hello World"。查阅了不少资料,也踩了不少坑。不过同时也学习了不少东西,下面我把我的代码记录下来,希望能够从中受益更多,同时帮助其他对Pytorch感兴趣的人。代码的注释中有不对的地方欢迎批评指正。
代码进行了注释,应该很方便阅读。 dependences: numpy torch torchvision python3 使用pip安装即可。
# encoding: utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F #加载nn中的功能函数
import torch.optim as optim #加载优化器有关包
import torch.utils.data as Data
from torchvision import datasets,transforms #加载计算机视觉有关包
from torch.autograd import Variable BATCH_SIZE = 64 #加载torchvision包内内置的MNIST数据集 这里涉及到transform:将图片转化成torchtensor
train_dataset = datasets.MNIST(root='~/data/',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = datasets.MNIST(root='~/data/',train=False,transform=transforms.ToTensor()) #加载小批次数据,即将MNIST数据集中的data分成每组batch_size的小块,shuffle指定是否随机读取
train_loader = Data.DataLoader(dataset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
test_loader = Data.DataLoader(dataset=test_dataset,batch_size=BATCH_SIZE,shuffle=False) #定义网络模型亦即Net 这里定义一个简单的全连接层784->10
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear1 = nn.Linear(784,10) def forward(self,X):
return F.relu(self.linear1(X)) model = Model() #实例化全连接层
loss = nn.CrossEntropyLoss() #损失函数选择,交叉熵函数
optimizer = optim.SGD(model.parameters(),lr = 0.1)
num_epochs = 5 #以下四个列表是为了可视化(暂未实现)
losses = []
acces = []
eval_losses = []
eval_acces = [] for echo in range(num_epochs):
train_loss = 0 #定义训练损失
train_acc = 0 #定义训练准确度
model.train() #将网络转化为训练模式
for i,(X,label) in enumerate(train_loader): #使用枚举函数遍历train_loader
X = X.view(-1,784) #X:[64,1,28,28] -> [64,784]将X向量展平
X = Variable(X) #包装tensor用于自动求梯度
label = Variable(label)
out = model(X) #正向传播
lossvalue = loss(out,label) #求损失值
optimizer.zero_grad() #优化器梯度归零
lossvalue.backward() #反向转播,刷新梯度值
optimizer.step() #优化器运行一步,注意optimizer搜集的是model的参数 #计算损失
train_loss += float(lossvalue)
#计算精确度
_,pred = out.max(1)
num_correct = (pred == label).sum()
acc = int(num_correct) / X.shape[0]
train_acc += acc losses.append(train_loss / len(train_loader))
acces.append(train_acc / len(train_loader))
print("echo:"+' ' +str(echo))
print("lose:" + ' ' + str(train_loss / len(train_loader)))
print("accuracy:" + ' '+str(train_acc / len(train_loader)))
eval_loss = 0
eval_acc = 0
model.eval() #模型转化为评估模式
for X,label in test_loader:
X = X.view(-1,784)
X = Variable(X)
label = Variable(label)
testout = model(X)
testloss = loss(testout,label)
eval_loss += float(testloss) _,pred = testout.max(1)
num_correct = (pred == label).sum()
acc = int(num_correct) / X.shape[0]
eval_acc += acc eval_losses.append(eval_loss / len(test_loader))
eval_acces.append(eval_acc / len(test_loader))
print("testlose: " + str(eval_loss/len(test_loader)))
print("testaccuracy:" + str(eval_acc/len(test_loader)) + '\n')
运行后的结果如下:

我们在上面的代码中,将图片对应的Pytorchtensor展平,并通过一个全连接层,仅仅是这样就达到了90%以上的准确率。如果使用卷积层,正确率有望达到更高。
代码并不完备,还可以增加visualize和predict功能,等我学到更多知识后,有待后续添加。
PytorchMNIST(使用Pytorch进行MNIST字符集识别任务)的更多相关文章
- R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)
		本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ... 
- 一个简单的TensorFlow可视化MNIST数据集识别程序
		下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ... 
- 深度学习-mnist手写体识别
		mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.t ... 
- Pytorch实现MNIST手写数字识别
		Pytorch是热门的深度学习框架之一,通过经典的MNIST 数据集进行快速的pytorch入门. 导入库 from torchvision.datasets import MNIST from to ... 
- Pytorch CNN网络MNIST数字识别 [超详细记录] 学习笔记(三)
		目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 ... 
- 基于PyTorch实现MNIST手写字识别
		本篇不涉及模型原理,只是分享下代码.想要了解模型原理的可以去看网上很多大牛的博客. 目前代码实现了CNN和LSTM两个网络,整个代码分为四部分: Config:项目中涉及的参数: CNN:卷积神经网络 ... 
- 全网最详细最好懂 PyTorch CNN案例分析 识别手写数字
		先来看一下这是什么任务.就是给你手写数组的图片,然后识别这是什么数字: dataset 首先先来看PyTorch的dataset类: 我已经在从零学习pytorch 第2课 Dataset类讲解了什么 ... 
- MNIST数字识别问题
		摘自<Tensorflow:实战Google深度学习框架> import tensorflow as tf from tensorflow.examples.tutorials.mnist ... 
- CNN算法解决MNIST数据集识别问题
		网络实现程序如下 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 用于设置将记 ... 
随机推荐
- Unity实现精灵资源动态加载
			private Sprite LoadSourceSprite(string relativePath) { //把资源加载到内存中 UnityEngine.Objec ... 
- Java——MVC模式
			MVC:Model View Controller 一般用于动态程序设计,实现了业务逻辑和表示层分离 Model:掌控数据源-->程序员编写程序或者实现算法,数据库人员进行数据库操作等:响应用户 ... 
- [工具-008] C#邮件发送系统
			邮件发送系统很多,但是我这边给大家展示下我最近开发的一款邮件发送系统,有参照网上的一个兄弟的界面,进行了升级,界面如下. 从界面上我们可以看到了该邮件系统有如下功能: 1)服务器的设置 2)发件人的设 ... 
- 【Java8新特性】关于并行流与串行流,你必须掌握这些!!
			写在前面 提到Java8,我们不得不说的就是Lambda表达式和Stream API.而在Java8中,对于并行流和串行流同样做了大量的优化.对于并行流和串行流的知识,也是在面试过程中,经常被问到的知 ... 
- JS代码静态分析及挖掘
			JavaScript 已经成为现代 Web 浏览器开发中最普遍的技术之一.使用客户端 JavaScript 框架(如 AngularJS,ReactJS 和 Vue.js)构建的应用程序已向前端输送了 ... 
- 树莓派3B安装ubuntu mate系统后无法联网
			问题描述:在安装系统的初始化操作时,可以联网,如下图所示: 但是在系统安装结束后,wifi标志处无信号,无法搜索wifi信号. 解决方法:实测有效 直接打开终端(ctrl+alt+t),执行指令:su ... 
- java 单列集合总结
			Collection 接口 add() remove() contains() clear(); size(); 迭代器遍历(普通迭代器,不能再遍历过程中修改集合的长度) List接口 单列集合 有序 ... 
- ThreadLocal Thread ThreadLocalMap 之间的关系
			ThreadLocal :每个线程通过此对象都会返回各自的值,互不干扰,这是因为每个线程都存着自己的一份副本.需要注意的是线程结束后,它所保存的所有副本都将进行垃圾回收(除非存在对这些副本的其他引用) ... 
- 上位机C#通过OPCUA和西门子PLC通信
			写在前面: 很多人在学习OPCUA的时候,有个非常苦恼的问题,就是没有OPCUA服务器的环境,这时候,有些人可能会想到通过类似于KepServer这样的软件来实现.那么,有没有一种方式,实现快速搭建O ... 
- 【Spring】JdbcTemplate的使用,查询,增、删、改
			数据库名:taobaodb 配置文件: JdbcTemplate主要提供以下五类方法: execute方法:可以用于执行任何SQL语句,一般用于执行DDL语句: update方法及batchUpdat ... 
