Visible Lattice Points

题目链接(点击)

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9031   Accepted: 5490

Description

A lattice point (xy) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (xy) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (xy) with 0 ≤ xy ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (xy) with 0 ≤ xy ≤ N.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549

思路:

问题:从原点出发的射线从x轴开始逆时针旋转,如果射线穿过某点则这个点 则该点可以被看到 求可以看到的点的个数总和

知道这个题是有规律(找到斜率相同且最先出现的点)直接看 看了好久也没找到,最后自己索性把所有要被与原点相连接的点打印出来 就可以看出来了

输出如图:

三个值分别表示:

x   y   k

规律:如果x是奇数(例如x=7) 需要满足gcd(x,y)==1的点 若是偶数同理

即:x与y互质 (佩服同学能直接看出来互质……)

下面是找规律的代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAX=1e6;
struct node{
double count2;
LL x;
LL y;
}num[MAX+5];
struct node1{
LL x1;
LL y1;
double num3;
}edge[MAX+5];
bool cmp(node a,node b)
{
if(a.count2==b.count2){
return a.x<b.x;
}
else{
return a.count2<b.count2;
}
}
bool cmp1(node1 a,node1 b)
{
if(a.x1!=b.x1){
return a.x1<b.x1;
}
return a.y1<b.y1;
}
int main()
{
LL count,T,n;
scanf("%lld",&T);
for(LL k=1;k<=T;k++){
scanf("%lld",&n);
count=0;
for(LL i=2;i<=n;i++){
for(LL j=1;j<i;j++){
num[count].count2=(j*1.0)/(i*1.0);
num[count].x=i;
num[count].y=j;
count++;
}
}
sort(num,num+count,cmp);
LL count1=0,count3=0;
for(LL i=0;i<count;i++){
if(num[i].count2!=num[i-1].count2){
edge[count3].x1=num[i].x;
edge[count3].y1=num[i].y;
edge[count3++].num3=num[i].count2;
// printf("*%lld %lld %.2lf\n",num[i].x,num[i].y,num[i].count2);
count1++;
}
}
sort(edge,edge+count3,cmp1);
for(int i=0;i<count3;i++){
printf("*%lld %lld %.2lf\n",edge[i].x1,edge[i].y1,edge[i].num3);
}
if(n==1){
printf("%lld 1 3\n",k);
}
else{
LL sum=3;
sum+=count1*2;
printf("%lld %lld %lld\n",k,n,sum);
}
}
return 0;
}

AC代码:

(找规律接近100行 但AC却只是40行左右)

#include<stdio.h>
typedef long long LL;
const int MAX=1e5;
int gcd(int a,int b)
{
if(b==0){
return a;
}
return gcd(b,a%b);
}
int main()
{
LL num[MAX+5]={0},T;
num[1]=1;
for(int i=2;i<=1000;i++){
LL count=0;
if(i%2==0){
for(int j=1;j<i;j+=2){
if(gcd(i,j)==1){
count++;
}
}
}
else{
for(int j=1;j<i;j++){
if(gcd(i,j)==1){
count++;
}
}
}
num[i]=num[i-1]+count;
}
scanf("%lld",&T);
for(LL k=1;k<=T;k++){
LL n,sum=0;
scanf("%lld",&n);
sum+=(num[n]*2+1);
printf("%lld %lld %lld\n",k,n,sum);
}
return 0;
}

Visible Lattice Points(规律题)【数学规律】的更多相关文章

  1. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  2. poj 3060 Visible Lattice Points

    http://poj.org/problem?id=3090 Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  5. Visible Lattice Points (莫比乌斯反演)

    Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...

  6. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  7. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  8. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  9. P8 Visible Lattice Points

    P8 Visible Lattice Points Time Limit:1000ms,     Memory Limit:65536KB Description A lattice point (x ...

随机推荐

  1. 设置TextField的响应View和toolBar

    inputView  设置用于展示的响应View 类似于键盘的展示方式 inputAccessoryView 用于设置响应View上面的ToolBar 使用方式: inputView设置为响应View ...

  2. SQL server数据库的密码策略与登录失败锁定策略

    SQL server数据库本身没有密码复杂度策略设置,它是使用Windows操作系统的校验函数来校验账户密码的,所以查看SQL server数据库密码复杂度需要结合操作系统本地安全策略的密码策略来看. ...

  3. js 遍历删除数组

    $(function(){ var aa = [1,1,2,3,3,4,4,5]; alert(aa); for (var i = aa.length-1;i >= 0 ;i--) { if ( ...

  4. 第4章 最基础的分类算法-k近邻算法

    思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...

  5. 13.Java连接Redis_Jedis_事务

    Jedis事务我们使用JDBC连接Mysql的时候,每次执行sql语句之前,都需要开启事务:在MyBatis中,也需要使用openSession()来获取session事务对象,来进行sql执行.查询 ...

  6. [JavaWeb基础] 013.Struts2 自定义类型转换器

    很多时候,我们在做web开发的时候经常要用到时间的转换器,Struts2给我们提供了一种类型转换器的接口.下面我们讲讲怎么实现吧. 1.首先我们要定义一个类型转换的类,继承自com.babybus.s ...

  7. bootstrap table 横向滚动条

    <table id="AlarmTable" style="overflow:scroll;"/> {title: '名称', field: 'na ...

  8. angularjs 指令传参规则

    angularjs 指令传参规则 xx-,data- 驼峰

  9. 分布式 ID 的 9 种生成方式

    为什么要用分布式ID? 在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征? 什么是分布式ID? 拿MySQL数据库举个栗子: 在我们业务数据量不大的时候, ...

  10. 【asp.net core 系列】2 控制器与路由的恩怨情仇

    0. 前言 在上一篇文章中,我们初步介绍了asp.net core,以及如何创建一个mvc项目.从这一篇开始,我将为大家展示asp.net core 的各种内容,并且尝试带领大家来挖掘其中的内在逻辑. ...