对于记录的数据,如何用 Python 进行分析、或图形化呢?

本文将介绍 numpy, matplotlib, pandas, scipy 几个包,进行数据分析、与图形化。

准备环境

Python 环境建议用 Anaconda 发行版,下载地址:

Anaconda 是一个用于科学计算的 Python 发行版,已经包含了众多流行的科学计算、数据分析的 Python 包。

可以 conda list 列出已有的包,会发现本文要介绍的几个包都有了:

$ conda list | grep numpy
numpy 1.17.2 py37h99e6662_0 $ conda list | grep "matplot\|seaborn\|plotly"
matplotlib 3.1.1 py37h54f8f79_0
seaborn 0.9.0 py37_0 $ conda list | grep "pandas\|scipy"
pandas 0.25.1 py37h0a44026_0
scipy 1.3.1 py37h1410ff5_0

如果已有 Python 环境,那么 pip 安装一下它们:

pip install numpy matplotlib pandas scipy
# pypi 镜像: https://mirrors.tuna.tsinghua.edu.cn/help/pypi/

本文环境为: Python 3.7.4 (Anaconda3-2019.10)

准备数据

本文假设了如下格式的数据 data0.txt :

id, data, timestamp
0, 55, 1592207702.688805
1, 41, 1592207702.783134
2, 57, 1592207702.883619
3, 59, 1592207702.980597
4, 58, 1592207703.08313
5, 41, 1592207703.183011
6, 52, 1592207703.281802
...

CSV 格式:逗号分隔,读写简单, Excel 可打开。

之后,我们会一起达成如下几个目标:

  • CSV 数据, numpy 读取与计算
  • data 列数据, matplotlib 图形化
  • data 列数据, scipy 插值,形成曲线
  • timestamp 列数据, pandas 分析前后差值、每秒个数

numpy 读取数据

numpy 可用 loadtxt 直接读取 CSV 数据,

import numpy as np

# id, (data), timestamp
datas = np.loadtxt(p, dtype=np.int32, delimiter=",", skiprows=1, usecols=(1))
  • dtype=np.int32: 数据类型 np.int32
  • delimiter=",": 分隔符 ","
  • skiprows=1: 跳过第 1 行
  • usecols=(1): 读取第 1 列

如果读取多列,

# id, (data, timestamp)
dtype = {'names': ('data', 'timestamp'), 'formats': ('i4', 'f8')}
datas = np.loadtxt(path, dtype=dtype, delimiter=",", skiprows=1, usecols=(1, 2))

dtype 说明可见: https://numpy.org/devdocs/reference/arrays.dtypes.html

numpy 分析数据

numpy 计算均值、样本标准差:

# average
data_avg = np.mean(datas)
# data_avg = np.average(datas) # standard deviation
# data_std = np.std(datas)
# sample standard deviation
data_std = np.std(datas, ddof=1) print(" avg: {:.2f}, std: {:.2f}, sum: {}".format(
data_avg, data_std, np.sum(datas)))

matplotlib 图形化

只需四行,就能图形化显示了:

import sys

import matplotlib.pyplot as plt
import numpy as np def _plot(path):
print("Load: {}".format(path))
# id, (data), timestamp
datas = np.loadtxt(path, dtype=np.int32, delimiter=",", skiprows=1, usecols=(1)) fig, ax = plt.subplots()
ax.plot(range(len(datas)), datas, label=str(i))
ax.legend()
plt.show() if __name__ == "__main__":
if len(sys.argv) < 2:
sys.exit("python data_plot.py *.txt")
_plot(sys.argv[1])

ax.plot(x, y, ...) 横坐标 x 取的数据下标 range(len(datas))

完整代码见文末 Gist 地址的 data_plot.py 。运行效果如下:

$ python data_plot.py data0.txt
Args
nonzero: False
Load: data0.txt
size: 20
avg: 52.15, std: 8.57, sum: 1043

可以读取多个文件,一起显示:

$ python data_plot.py data*.txt
Args
nonzero: False
Load: data0.txt
size: 20
avg: 52.15, std: 8.57, sum: 1043
Load: data1.txt
size: 20
avg: 53.35, std: 6.78, sum: 1067

scipy 对数据插值

x, y 两组数据,用 scipy 进行插值,平滑成曲线:

from scipy import interpolate

xnew = np.arange(xvalues[0], xvalues[-1], 0.01)
ynew = interpolate.interp1d(xvalues, yvalues, kind='cubic')

完整代码见文末 Gist 地址的 data_interp.py 。运行效果如下:

python data_interp.py data0.txt

matplotlib 图像化时如何配置、延迟、保存,可见代码与注释。

pandas 分析数据

这儿需要读取 timestamp 列数据,

# id, data, (timestamp)
stamps = np.loadtxt(path, dtype=np.float64, delimiter=",", skiprows=1, usecols=(2))

numpy 计算前后差值,

stamps_diff = np.diff(stamps)

pandas 统计每秒个数,

stamps_int = np.array(stamps, dtype='int')
stamps_int = stamps_int - stamps_int[0]
import pandas as pd
stamps_s = pd.Series(data=stamps_int)
stamps_s = stamps_s.value_counts(sort=False)

办法:把时间戳直接变整秒数,再 pandas 统计相同值。

完整代码见文末 Gist 地址的 stamp_diff.py 。运行效果如下:

python stamp_diff.py data0.txt

matplotlib 图形化时怎么显示多个图表,也可见代码。

结语

本文代码 Gist 地址: https://gist.github.com/ikuokuo/8629cc28079199c65e0eedb0d02a9e74

科学计算:Python 分析数据找问题,并图形化的更多相关文章

  1. Python分析数据难吗?某科技大学教授说,很难但有方法就简单

    用python分析数据难吗?某科技大学的教授这样说,很难,但要讲方法,主要是因为并不是掌握了基础,就能用python来做数据分析的. 所谓python的基础,也就是刚入门的python学习者,学习的基 ...

  2. 分享一个基于小米 soar 的开源 sql 分析与优化的 WEB 图形化工具

    soar-web 基于小米 soar 的开源 sql 分析与优化的 WEB 图形化工具,支持 soar 配置的添加.修改.复制,多配置切换,配置的导出.导入与导入功能. 环境需求 python3.xF ...

  3. 32-第3章 数据链路层--抓包分析数据帧格式-ISO一图了然-小结

    OSI理论模型 层级 名称 事物举例 功能 数据单位 别名 数据组成 协议举例 7 应用层 QQ.OA 网络通信 上层数据 上层数据 HTTP/FTP/DNS 6 表示层 web数据压缩.https加 ...

  4. CentOS6.5配置python开发环境之一:CentOS图形化界面显示

    这两天在配置centos系统下python的开发环境和工具. 刚用centos,做做记录可以方便以后有需要的人...查资料确实挺麻烦的 centos6.5 sublime3 python27 subl ...

  5. 提高生产性工具(五) - 数据的过滤器和图形化(适用于 MVC5 + MongoDB)

    在下面流水账似的文章之前,先将一些感悟说一下. 1.如果一个系统对于某个功能在至少三个地方使用的话,必须将其抽象提炼出来,而且时间点最好是大规模测试之前. 2.提炼出来的功能,如果品质做得好,整个系统 ...

  6. python学习(十二) 图形化用户界面

    12.1 丰富的平台 12.2 下载和安装wxPython 12.3 创建示例GUI应用程序 12.3.1 开始 12.3.2 窗口和组件 12.3.3 标签.标题和位置 12.3.4 更智能的布局 ...

  7. Python 科学计算-介绍

    Python 科学计算 作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文 ...

  8. Python科学计算(一)

    作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文件 http://git ...

  9. Python科学计算(二)windows下开发环境搭建(当用pip安装出现Unable to find vcvarsall.bat)

    用于科学计算Python语言真的是amazing! 方法一:直接安装集成好的软件 刚开始使用numpy.scipy这些模块的时候,图个方便直接使用了一个叫做Enthought的软件.Enthought ...

随机推荐

  1. Mysql批量导入多个sql文件

    DB_edusuntk文件夹下有2000多个个sql备份文件,如何批量导入?首先新建一个main.sql,然后在main.sql文件里面这么写: source C:/sql/1.sql; source ...

  2. Python Redis常用操作(持续更新)

    目录 1.Redis简介 2.Redis部署 3.Redis API应用 4.String操作 1.Redis简介 redis是业界主流的key-value,nosql数据库之一.和Memcached ...

  3. [译] 制作 Vue 3 的过程

    原文链接: https://increment.com/frontend/making-vue-3 在过去的一年里,Vue 团队一直在研究 Vue.js 的下一个主要版本,我们希望在 2020 年上半 ...

  4. Android启动过程_大致流程

    Android大致启动过程如图(基于O版本  使用draw.io画的). 注:这是通过查询结合自己了解的,还有不少不明确的,后续有进展完善,欢迎指正. 说明:绿色是主要几个的阶段.其他围绕这几个阶段的 ...

  5. NOIP 2017 P3959 宝藏 (状态压缩DP板子)

    洛谷题目传送门!! 题目的N这么小,当然是选择用状压DP啦!  等等,我好像不会状缩.... 首先,我们当然是要写状态转移方程了!! 那么,如果我们设  f[s]  状态s下,所要的最小花费,那么很显 ...

  6. [C#打包部署教程]002.VS2012 + Dotfuscator

    前言: C#程序界流传着一句古话:"成也Reflector,败也Reflector!" C#编写的代码如果不进行一定程度的混淆和加密,那么是非常容易被反编译进行破解的,特别是对于一 ...

  7. jQuery 获取页面宽高

    无滚动条的情况下(页面宽高比可视区域小):$(document)和$(window)的width.height方法获取的值都是一样的,都是可视区域的宽高即$(document).width()==$( ...

  8. 分布式事务解决方案Seata

    Seata全称是Simple Extensible Autonomous Transaction Architecture,是由阿里巴巴开源的具有高性能和易用性的分布式事务解决方案. 微服务中的分布式 ...

  9. MongoDB启动和关闭问题

    1.当我们使用离线安装mongodb完成后, 推荐安装教程: http://dblab.xmu.edu.cn/blog/868-2/#more-868 在使用 ' mongod -f XXX/mong ...

  10. ASP.NET Core 3.x API版本控制

    前言 一般来说需要更改我们API的时候才考虑版本控制,但是我觉得我们不应该等到那时候来实现它,我们应该有一个版本策略从我们应用程序开发时就开始制定好我们的策略,我们一直遵循着这个策略进行开发. 我们其 ...