本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库。

通过本文系列文章您将能够学到的知识如下:

  • 应用Python进行大数据与机器学习

  • 应用Spark进行大数据分析

  • 实现机器学习算法

  • 学习使用NumPy库处理数值数据

  • 学习使用Pandas库进行数据分析

  • 学习使用Matplotlib库进行Python绘图

  • 学习使用Seaborn库进行统计绘图

  • 使用Plotly库进行动态可视化

  • 使用SciKit-learn处理机器学习任务

  • K-Means聚类

  • 逻辑回归

  • 线性回归

  • 随机森林与决策树

  • 自然语言处理与垃圾邮件过滤

  • 神经网络

  • 支持向量机

另外小编也会拥抱变化,根据评论中的需求情况增加其它有意义的内容。例如增加一些相关面试题等等。

什么是NumPy

NumPy是非常重要的Python数值计算扩展库,基本整个Python大数据生态都依赖它,并且由于绑定了C语言库,因此速度非常快。可以说我们要学好Python大数据,必须要学的就是NumPy库了。

安装NumPy

如果你根据之前的文章安装了anaconda,那么你已经默认安装了NumPy库了。如想单独安装请继续往下看。

使用conda安装的命令:

conda install numpy

使用pip安装的命令:

pip install numpy

NumPy array

本系列文章主要用到的是numpy的array(数组);

numpy array有两种基本形式:vector(向量)和matrics(矩阵)

vector是一维的,而matrics是二维的。

打开Jupyter,输入如下内容:

import numpy as np

my_list = [1,2,3]

arr = np.array(my_list)

arr

运行得到如下结果:

以上就是vector的一般形式

继续输入如下内容:

my_mat = [[1,2,3],[4,5,6],[7,8,9]]

np.array(my_mat)

运行得到如下结果:

以上就是二维matrics矩阵。

numpy有自己的range函数

np.arange(0,10)

运行结果如下:

还可以指定步长np.arange(0,10,2)

运行结果如下:

生成所有元素为0的向量np.zeros(3)

运行结果如下:

生成所有元素为0的矩阵np.zeros((5,5))

运行结果如下:

同样生成所有元素为1的向量和矩阵分表为np.ones(4),np.ones((2,3))

运行结果如下:

np.linspace(0,5,20)

第一个参数是起始点,第二个参数是结束点,第三个参数是从起点到终点距离分成多少份。

运行结果如下:

np.eye(4)生成4*4的主对角线为1的矩阵

运行结果如下:

np.random.rand(5)生成随机向量

运行结果如下:

np.random.rand(5,5)生成5*5的随机向量

运行结果如下:

np.random.randn(2)生成标准正态分布曲线。

运行结果如下:

np.random.randn(4,4)二维的标准正态分布曲线

运行结果如下:

提示:

在Jupyter输入框中按tab键可以提示联想菜单,按shift+tab可以提示函数用法

按tab键

按shift+tab键

np.random.randint(1,100)生成1个1到100之间的随机整数,不包含100

运行结果如下:

np.random.randint(1,100,10)生成10个1到100之间的随机整数,不包含100

运行结果如下:

array类型支持的一些函数:

reshape函数可以修改array的维数。例如:

arr = np.arange(25)

arr.reshape(5,5)

运行结果如下:

max函数:最大值

min函数:最小值

argmax函数:返回最大值的索引

argmin函数:返回最小值的索引

ranarr = np.random.randint(1,100,10)

ranarr.max()

ranarr.min()

ranarr.argmax()

ranarr.argmin()

运行结果如下:

shape函数,返回array的大小

dtype,返回数据类型

调用简化:

from numpy.random import randint

我们就可以直接使用randint了

randint(2,10)

运行结果如下:

Python大数据与机器学习之NumPy初体验的更多相关文章

  1. 零基础入门到精通:Python大数据与机器学习之Pandas-数据操作

    在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python ...

  2. 零起点PYTHON足彩大数据与机器学习实盘分析

    零起点PYTHON足彩大数据与机器学习实盘分析 第1章 足彩与数据分析 1 1.1 “阿尔法狗”与足彩 1 1.2 案例1-1:可怕的英国足球 3 1.3 关于足彩的几个误区 7 1.4 足彩·大事件 ...

  3. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  4. H2O是开源基于大数据的机器学习库包

    H2O是开源基于大数据的机器学习库包 H2O能够让Hadoop做数学,H2O是基于大数据的 统计分析 机器学习和数学库包,让用户基于核心的数学积木搭建应用块代码,采取类似R语言 Excel或JSON等 ...

  5. 学习推荐《零起点Python大数据与量化交易》中文PDF+源代码

    学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书<零起点Python大数据与量化交易>. 配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据 ...

  6. 零起点Python大数据与量化交易

    零起点Python大数据与量化交易 第1章 从故事开始学量化 1 1.1 亿万富翁的“神奇公式” 2 1.1.1 案例1-1:亿万富翁的“神奇公式” 2 1.1.2 案例分析:Python图表 5 1 ...

  7. 【阿里云产品公测】结构化数据服务OTS之JavaSDK初体验

    [阿里云产品公测]结构化数据服务OTS之JavaSDK初体验 作者:阿里云用户蓝色之鹰 一.OTS简单介绍 OTS 是构建在阿里云飞天分布式系统之上的NoSQL数据库服务,提供海量结构化数据的存储和实 ...

  8. python大数据

    http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似Hive ...

  9. 使用 .NET 5 体验大数据和机器学习

    翻译:精致码农-王亮 原文:http://dwz.win/XnM .NET 5 旨在提供统一的运行时和框架,使其在各平台都有统一的运行时行为和开发体验.微软发布了与 .NET 协作的大数据(.NET ...

随机推荐

  1. 怎样设计最优的卷积神经网络架构?| NAS原理剖析

    虽然,深度学习在近几年发展迅速.但是,关于如何才能设计出最优的卷积神经网络架构这个问题仍在处于探索阶段. 其中一大部分原因是因为当前那些取得成功的神经网络的架构设计原理仍然是一个黑盒.虽然我们有着关于 ...

  2. 2020年最新版Web前端学习路线图-前端小白入门必读-pink老师推荐

    Hello,大家好,相信很多学习前端的小伙伴,会有很多的疑惑: 我要学习那些技术? 我要到哪里去学习这些技术呢? 学习这些技术的目的对就业有什么帮助呢? 我学到什么程度可以胜任工作? ... 这里,p ...

  3. netty实现群聊功能

    [概述] 实现一个网络群聊工具.参与聊天的客户端消息是通过服务端进行广播的. 主要由两块组成:聊天服务器端(ChatServer)和聊天客户端(ChatClient). 聊天服务器(ChatServe ...

  4. C 最大公约数&最小公倍数

    1.最大公约数  链接 如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数.几个自然数公有的约数,叫做这几个自然数的公约数.公约数中最大的一个公约数,称为这几个自然数的最大公约数. 1 ...

  5. Java实现3次找到假球

    前言 之前老师让写一个程序,就写了写. 正文 题目要求 程序要求 10个铅球中有一个假球(比其他铅球的重量要轻),用天平三次称出假球. 程序设计思路 第一次使用天平分别称5个球,判断轻的一边有假球:拿 ...

  6. Centos6升级内核方法

    docker需要内核在3.0以上,如果centos6上需要安装docker的话需要先将内核进行升级 工具/原料   Centos6.5_x64 方法/步骤     操作系统为centos6.5,内核为 ...

  7. 感动,我终于学会了Java对数组求和

    前言 看到题目是不是有点疑问:你确定你没搞错?!数组求和???遍历一遍累加起来不就可以了吗??? 是的,你说的都对,都听你的,但是我说的就是数组求和,并且我也确实是刚刚学会.╮(╯▽╰)╭ 继续看下去 ...

  8. Shell:Day07.笔记

    函数:1.函数介绍function 为了避免代码重复使用,我们一般通过函数编写代码块,而这一个代码块用来实现某种功能. 且,这个功能在后面的代码中,会重复调用:  def 2.函数的语法格式 函数的写 ...

  9. MTK Android中设置默认时区

    设置默认时区 PRODUCT_PROPERTY_OVERRIDES += \ persist.sys.timezone=Asia/Shanghai\ 注:搜索“persist.sys.timezone ...

  10. 基础类封装-Requests库封装

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2020/03/18 23:37 # @Author : Tang Yiwei # @ ...