Python大数据与机器学习之NumPy初体验
本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库。
通过本文系列文章您将能够学到的知识如下:
应用Python进行大数据与机器学习
应用Spark进行大数据分析
实现机器学习算法
学习使用NumPy库处理数值数据
学习使用Pandas库进行数据分析
学习使用Matplotlib库进行Python绘图
学习使用Seaborn库进行统计绘图
使用Plotly库进行动态可视化
使用SciKit-learn处理机器学习任务
K-Means聚类
逻辑回归
线性回归
随机森林与决策树
自然语言处理与垃圾邮件过滤
神经网络
支持向量机
另外小编也会拥抱变化,根据评论中的需求情况增加其它有意义的内容。例如增加一些相关面试题等等。
什么是NumPy
NumPy是非常重要的Python数值计算扩展库,基本整个Python大数据生态都依赖它,并且由于绑定了C语言库,因此速度非常快。可以说我们要学好Python大数据,必须要学的就是NumPy库了。
安装NumPy
如果你根据之前的文章安装了anaconda,那么你已经默认安装了NumPy库了。如想单独安装请继续往下看。
使用conda安装的命令:
conda install numpy
使用pip安装的命令:
pip install numpy
NumPy array
本系列文章主要用到的是numpy的array(数组);
numpy array有两种基本形式:vector(向量)和matrics(矩阵)
vector是一维的,而matrics是二维的。
打开Jupyter,输入如下内容:
import numpy as np
my_list = [1,2,3]
arr = np.array(my_list)
arr
运行得到如下结果:
以上就是vector的一般形式
继续输入如下内容:
my_mat = [[1,2,3],[4,5,6],[7,8,9]]
np.array(my_mat)
运行得到如下结果:
以上就是二维matrics矩阵。
numpy有自己的range函数
np.arange(0,10)
运行结果如下:
还可以指定步长np.arange(0,10,2)
运行结果如下:
生成所有元素为0的向量np.zeros(3)
运行结果如下:
生成所有元素为0的矩阵np.zeros((5,5))
运行结果如下:
同样生成所有元素为1的向量和矩阵分表为np.ones(4),np.ones((2,3))
运行结果如下:
np.linspace(0,5,20)
第一个参数是起始点,第二个参数是结束点,第三个参数是从起点到终点距离分成多少份。
运行结果如下:
np.eye(4)生成4*4的主对角线为1的矩阵
运行结果如下:
np.random.rand(5)生成随机向量
运行结果如下:
np.random.rand(5,5)生成5*5的随机向量
运行结果如下:
np.random.randn(2)生成标准正态分布曲线。
运行结果如下:
np.random.randn(4,4)二维的标准正态分布曲线
运行结果如下:
提示:
在Jupyter输入框中按tab键可以提示联想菜单,按shift+tab可以提示函数用法
按tab键
按shift+tab键
np.random.randint(1,100)生成1个1到100之间的随机整数,不包含100
运行结果如下:
np.random.randint(1,100,10)生成10个1到100之间的随机整数,不包含100
运行结果如下:
array类型支持的一些函数:
reshape函数可以修改array的维数。例如:
arr = np.arange(25)
arr.reshape(5,5)
运行结果如下:
max函数:最大值
min函数:最小值
argmax函数:返回最大值的索引
argmin函数:返回最小值的索引
ranarr = np.random.randint(1,100,10)
ranarr.max()
ranarr.min()
ranarr.argmax()
ranarr.argmin()
运行结果如下:
shape函数,返回array的大小
dtype,返回数据类型
调用简化:
from numpy.random import randint
我们就可以直接使用randint了
randint(2,10)
运行结果如下:
Python大数据与机器学习之NumPy初体验的更多相关文章
- 零基础入门到精通:Python大数据与机器学习之Pandas-数据操作
在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python ...
- 零起点PYTHON足彩大数据与机器学习实盘分析
零起点PYTHON足彩大数据与机器学习实盘分析 第1章 足彩与数据分析 1 1.1 “阿尔法狗”与足彩 1 1.2 案例1-1:可怕的英国足球 3 1.3 关于足彩的几个误区 7 1.4 足彩·大事件 ...
- 《零起点,python大数据与量化交易》
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...
- H2O是开源基于大数据的机器学习库包
H2O是开源基于大数据的机器学习库包 H2O能够让Hadoop做数学,H2O是基于大数据的 统计分析 机器学习和数学库包,让用户基于核心的数学积木搭建应用块代码,采取类似R语言 Excel或JSON等 ...
- 学习推荐《零起点Python大数据与量化交易》中文PDF+源代码
学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书<零起点Python大数据与量化交易>. 配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据 ...
- 零起点Python大数据与量化交易
零起点Python大数据与量化交易 第1章 从故事开始学量化 1 1.1 亿万富翁的“神奇公式” 2 1.1.1 案例1-1:亿万富翁的“神奇公式” 2 1.1.2 案例分析:Python图表 5 1 ...
- 【阿里云产品公测】结构化数据服务OTS之JavaSDK初体验
[阿里云产品公测]结构化数据服务OTS之JavaSDK初体验 作者:阿里云用户蓝色之鹰 一.OTS简单介绍 OTS 是构建在阿里云飞天分布式系统之上的NoSQL数据库服务,提供海量结构化数据的存储和实 ...
- python大数据
http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似Hive ...
- 使用 .NET 5 体验大数据和机器学习
翻译:精致码农-王亮 原文:http://dwz.win/XnM .NET 5 旨在提供统一的运行时和框架,使其在各平台都有统一的运行时行为和开发体验.微软发布了与 .NET 协作的大数据(.NET ...
随机推荐
- 旷视6号员工范浩强:高二开始实习,“兼职”读姚班,25岁在CVPR斩获第四个世界第一...
初来乍到,这个人说话容易让人觉得"狂". "我们将比赛结果提交上去,果不其然,是第一名的成绩."当他说出这句话的时候,表情没有一丝波澜,仿佛一切顺理成章. 他说 ...
- HDU - 1317 ~ SPFA正权回路的判断
题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...
- web样式css
css样式 什么是css 层叠样式表(Cascading Style Sheets),是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的计算机语言. ...
- coding++:Idea设置Java类注释模板和方法注释模板
设置类注释模板 1):选择File–>Settings–>Editor–>File and Code Templates–>Includes–>File Header. ...
- .NET 5.0 Preview 2发布
2020年4月2日微软.NET 团队的项目经理 Richard 在博客上 发布了.NET 5 Preview 2:https://devblogs.microsoft.com/dotnet/annou ...
- Ubuntu下已安装Anaconda但出现conda: command not found错误解决办法
原因:环境未配置 执行[vim ~/.bashrc]命令,进入配置文件,在最后一行按'o'插入一行,并添加语句: export PATH=/home/duanyongchun/anaconda3/bi ...
- Web 环境设置
修改最大打开文件数量 ulimit -n 100000 修改创建文件的最大值 #/etc/security/limits.conf * soft nofile 262140 * hard nofile ...
- B 方块消消乐
时间限制 : - MS 空间限制 : - KB 评测说明 : 1s,128m 问题描述 何老板在玩一款消消乐游戏,游戏虽然简单,何老板仍旧乐此不疲.游戏一开始有n个边长为1的方块叠成一个高为n的 ...
- Codeforces Round #629 (Div. 3)
A. Divisibility Problem time limit per test 1 second memory limit per test 256 megabytes input stand ...
- uCOS-II简介及移植uCOS-II到STM32F103平台详细步骤
1.参考博客:https://blog.csdn.net/wang328452854/article/details/78486458 2.uCOS(也有人叫uC/OS)由美国人 Jean Labro ...