King's Quest
Time Limit: 15000MS   Memory Limit: 65536K
Total Submissions: 9460   Accepted: 3497
Case Time Limit: 2000MS

Description

Once upon a time there lived a king and he had N sons. And there were N beautiful girls in the kingdom and the king knew about each of his sons which of those girls he did like. The sons of the king were young and light-headed, so it was possible for one son to like several girls.

So the king asked his wizard to find for each of his sons the girl he liked, so that he could marry her. And the king's wizard did it -- for each son the girl that he could marry was chosen, so that he liked this girl and, of course, each beautiful girl had to marry only one of the king's sons.

However, the king looked at the list and said: "I like the list you have made, but I am not completely satisfied. For each son I would like to know all the girls that he can marry. Of course, after he marries any of those girls, for each other son you must still be able to choose the girl he likes to marry."

The problem the king wanted the wizard to solve had become too hard for him. You must save wizard's head by solving this problem.

Input

The first line of the input contains N -- the number of king's sons (1 <= N <= 2000). Next N lines for each of king's sons contain the list of the girls he likes: first Ki -- the number of those girls, and then Ki different integer numbers, ranging from 1 to N denoting the girls. The sum of all Ki does not exceed 200000.

The last line of the case contains the original list the wizard had made -- N different integer numbers: for each son the number of the girl he would marry in compliance with this list. It is guaranteed that the list is correct, that is, each son likes the girl he must marry according to this list.

Output

Output N lines.For each king's son first print Li -- the number of different girls he likes and can marry so that after his marriage it is possible to marry each of the other king's sons. After that print Li different integer numbers denoting those girls, in ascending order.

Sample Input

4
2 1 2
2 1 2
2 2 3
2 3 4
1 2 3 4

Sample Output

2 1 2
2 1 2
1 3
1 4
题解这里
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
const int M=4e6+;
vector<int>sc[N];
vector<int>G[N];
int head[N],dfn[N],low[N],q[N];
bool instack[N],mp[][];
int tot,scnt,l,cnt;
struct node
{
int to,next;
} e[M];
void add(int u,int v)
{
e[tot].to=v;
e[tot].next=head[u];
head[u]=tot++;
}
void Tarjan(int u)
{
dfn[u]=low[u]=++cnt;
q[l++]=u;
instack[u]=;
for(int i=head[u]; ~i; i=e[i].next)
{
int v=e[i].to;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v]&&dfn[v]<low[u]) low[u]=dfn[v];
}
if(low[u]==dfn[u])
{
++scnt;
int t;
do
{
t=q[--l];
sc[scnt].push_back(t);
instack[t]=;
}
while(t!=u);
}
}
int main()
{
int n,x,y;
while(scanf("%d",&n)!=EOF)
{
tot=scnt=cnt=l=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(mp,,sizeof(mp));
for(int i=; i<=n; ++i)
{
scanf("%d",&x);
while(x--)
{
scanf("%d",&y);
add(i,y+n);
G[i].clear();
sc[i].clear();
mp[i][y]=;
}
}
for(int i=; i<=n; ++i)
{
scanf("%d",&x);
add(x+n,i);
}
for(int i=; i<=n; ++i) if(!dfn[i]) Tarjan(i);
for(int i=; i<=scnt; ++i) sort(sc[i].begin(),sc[i].end());
for(int i=; i<=scnt; ++i)
{
int tc=upper_bound(sc[i].begin(),sc[i].end(),n)-sc[i].begin();
for(int j=; j<tc; ++j) for(int k=tc; k<(int)sc[i].size(); ++k) if(mp[sc[i][j]][sc[i][k]-n] ) G[sc[i][j]].push_back(sc[i][k]-n);
}
for(int i=; i<=n; ++i)
{
printf("%d",(int)G[i].size());
for(int j=; j<(int)G[i].size(); ++j) printf(" %d",G[i][j]);
puts("");
}
}
}

poj1904 完美匹配+Tarjan的更多相关文章

  1. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  2. POJ 1904 King's Quest ★(强连通分量:可行完美匹配边)

    题意 有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚且能与所有人不发生 ...

  3. POJ 1904 King's Quest (强连通分量+完美匹配)

    <题目链接> 题目大意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王 ...

  4. poj 1904(强连通分量+完美匹配)

    传送门:Problem 1904 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:http://www.cnblogs.co ...

  5. ZOJ-3933 Team Formation (二分图最佳完美匹配)

    题目大意:n个人,分为两个阵营.现在要组成由若干支队伍,每支队伍由两个人组成并且这两个人必须来自不同的阵营.同时,每个人都有m个厌恶的对象,并且厌恶是相互的.相互厌恶的人不能组成一支队伍.问最多能组成 ...

  6. UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)

    题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...

  7. UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design

    题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi  ...

  8. UVALive 2238 Fixed Partition Memory Management(二分完美匹配)

    题意:计算机中有一些固定大小的内存,内存越大,处理速度越快.对于一个程序,加入不同的内存空间,处理所需时间不同.现给出m个内存空间,n个程序,对于每个程序程序,有k组数据(s,t),分别表示当程序 i ...

  9. UVALive 4043 Ants(二分图完美匹配)

    题意:每个蚁群有自己的食物源(苹果树),已知蚂蚁靠气味辨别行进方向,所以蚁群之间的行动轨迹不能重叠.现在给出坐标系中n个蚁群和n棵果树的坐标,两两配对,实现以上要求.输出的第 i 行表示第 i 个蚁群 ...

随机推荐

  1. 【Linux题目】第四关

    1. 如何过滤出已知当前目录下oldboy中的所有一级目录? 提示:不包含oldboy目录下面目录的子目录和隐藏目录,只要一级目录即可. 解答: ls -F|grep /   通过ls -F给目录后面 ...

  2. 标准库ConfigParser模块

    用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser. 来看一个好多软件的常见文档格式如下: 1 2 3 4 5 6 7 8 9 10 11 12 ...

  3. 腾讯视频怎么转成mp4模式 软件 工具 方法 最新【已解决】

    1.搜索: 小白兔视频格式在线转换 2.转换好后视频已经是MP4格式了. 转载于:https://blog.51cto.com/14204019/2396896

  4. BigDecimal 01 - 在JAVA中怎么比较Double类型数据的大小?

    2019独角兽企业重金招聘Python工程师标准>>>  非整型数,运算由于精度问题,可能会有误差,建议使用BigDecimal类型! double a = 0.001;  doub ...

  5. Intellij IDEA 使用Spring-boot-devTools

    转载地址:https://blog.csdn.net/u013938484/article/details/77541050 转载于:https://blog.51cto.com/881206524/ ...

  6. 外媒评Mate 10 Pro:智慧拍照惊人,续航能力卓越

    说到近期的热门机型,华为Mate 10 Pro绝对算是被人们谈论最多的一个,其可以算是首款搭载移动AI芯片的顶级旗舰机型,而且AI技术在这部手机上拥有多项实际的应用,带来的体验非传统智能手机可比. 由 ...

  7. 基于TCP的客户端和服务器端的代码设计

    实验平台 linux 实验内容 编写TCP服务器和客户端程序,程序运行时服务器等待客户端连接.一旦连接成功,服务器显示客户端的IP地址和端口号,并向客户端发送字符串 实验原理 TCP是面向连接的通信, ...

  8. Jenkins 构建 Jmeter 项目

    1.启动 Jenkins(windows 版本) 2.新建自由风格的项目 定时任务 构建操作 安装 HTML Publisher 插件 构建后操作 最后保存构建,查看报告

  9. B站弹幕系统架构——GOIM解读

    架构图 说明: 1.logic启动http服务器, 接受http请求,用于将数据推送到kafka以及获取在线用户信息,websocket身份校验 2.comet组件起动webdocket/tcp服务, ...

  10. abp(net core)+easyui+efcore实现仓储管理系统——入库管理之十一(四十七)

    abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...