CNN基础三:预训练模型的微调
上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器。
这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练。但缺点在于,一是别人的模型是针对具体的任务训练的,里面提取到的特征不一定适合自己的任务;二是无法使用图像增强的方法进行端到端的训练。
因此,更为常用的一种方法是预训练模型修剪 + 微调,好处是可以根据自己任务需要,将预训练的网络和自定义网络进行一定的融合;此外还可以使用图像增强的方式进行端到端的训练。仍然以VGG16为例,过程为:
- 在已经训练好的基网络(base network)上添加自定义网络;
- 冻结基网络,训练自定义网络;
- 解冻部分基网络,联合训练解冻层和自定义网络。
注意在联合训练解冻层和自定义网络之前,通常要先训练自定义网络,否则,随机初始化的自定义网络权重会将大误差信号传到解冻层,破坏解冻层以前学到的表示,使得训练成本增大。
第一步:对预训练模型进行修改
##################第一步:在已经训练好的卷积基上添加自定义网络######################
import numpy as np
from keras.applications.vgg16 import VGG16
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
#搭建模型
conv_base = VGG16(include_top=False, input_shape=(150,150,3)) #模型也可以看作一个层
model = Sequential()
model.add(conv_base)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
#model.summary()
第二步:冻结卷积基,训练自定义网络
######################第二步:冻结卷积基,训练自定义网络##########################
#冻结卷积基,确保结果符合预期。或者用assert len(model.trainable_weights) == 30来验证
print("冻结之前可训练的张量个数:", len(model.trainable_weights)) #结果为30
conv_base.trainable = False
print("冻结之后可训练的张量个数:", len(model.trainable_weights)) #结果为4
#注:只有后两层Dense可以训练,每层一个权重张量和一个偏置张量,所以有4个
#利用图像生成器进行图像增强
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255) #验证、测试的图像生成器不能用图像增强
train_dir = r'D:\KaggleDatasets\MyDatasets\dogs-vs-cats-small\train'
validation_dir = r'D:\KaggleDatasets\MyDatasets\dogs-vs-cats-small\validation'
train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(150,150),
batch_size=20,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(validation_dir,
target_size=(150,150),
batch_size=20,
class_mode='binary')
#模型编译和训练,注意修改trainable属性之后需要重新编译,否则修改无效
from keras import optimizers
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
H = model.fit_generator(train_generator,
steps_per_epoch=2000/20,
epochs=30,
validation_data=validation_generator,
validation_steps=1000/20)
训练30个epoch之后,结果如图所示。(结果可视化代码见上一节)

第三步:解冻部分卷积基(第5个block),联合训练
通常keras的冻结和解冻操作用的是模型或层的trainable属性。需要注意三点:
- model.trainable是全局属性,layer.trainable是层的属性,单独定义层的这一属性后全局属性即失效;
- 定义这一属性后,模型需要重新编译才能生效;
- conv_base是一个模型,但它在总模型model中是作为一个层的实例,因此遍历model.layers时会把conv_base作为一个层,如果需要深入conv_base内部各层进行操作,需要遍历conv_base.layers。
为了确保trainable属性符合预期,通常会确认一下,下面一些代码可能会有用。(这段主要是便于理解,跑代码时可选择性忽略这段。)
#可视化各层序号及名称
for i, layer in enumerate(model.layers):
print(i, layer.name)
for i, layer in enumerate(conv_base.layers):
print(i, layer.name)
#由于之前操作错误,导致模型全部层都被冻结,所以这个模块先把所有层解冻
for layer in conv_base.layers: #先解冻卷积基中所有层的张量
layer.trainable = True
for layer in model.layers: #解冻model中所有层张量
layer.trainable = True
#查看各层的trainable属性
for layer in model.layers:
print(layer.name, layer.trainable)
for layer in conv_base.layers:
print(layer.name, layer.trainable)
#model.trainable = True #注意:设定单独层的trainable属性后,全局trainable属性无效
print(len(conv_base.trainable_weights)) #26
print(len(model.trainable_weights)) #30
经过第二步之后,卷积基被冻结,后两层Dense可训练。接下来正式开始第三步,解冻第5个block,联合训练解冻层和自定义网络。
######################第三步:解冻部分卷积基,联合训练##########################
#冻结VGG16中前四个block,解冻第五个block
flag = False #标记是否到达第五个block
for layer in conv_base.layers: #注意不是遍历model.layers
if layer.name == 'block5_conv1': #若到达第五个block,则标记之
flag = True
if flag == False: #若标记为False,则冻结,否则设置为可训练
layer.trainable = False
else:
layer.trainable = True
print(len(model.trainable_weights)) #应为10
#重新编译并训练。血泪教训,一定要重新编译,不然trainable属性就白忙活了!
from keras import optimizers
#注:吐血,官网文档参数learning_rate,这里竟然不认,只能用lr
model.compile(loss='binary_crossentropy',
optimizer=optimizers.Adam(lr=1e-5), metrics=['accuracy'])
H2 = model.fit_generator(train_generator,
steps_per_epoch=2000/20,
epochs=100,
validation_data=validation_generator,
validation_steps=1000/20)
经过100个epoch之后,结果如下。可以看出验证准确率被提高到94%左右。

Reference:
书籍:Python深度学习
CNN基础三:预训练模型的微调的更多相关文章
- 自然语言处理(三) 预训练模型:XLNet 和他的先辈们
预训练模型 在CV中,预训练模型如ImagNet取得很大的成功,而在NLP中之前一直没有一个可以承担此角色的模型,目前,预训练模型如雨后春笋,是当今NLP领域最热的研究领域之一. 预训练模型属于迁移学 ...
- BERT的通俗理解 预训练模型 微调
1.预训练模型 BERT是一个预训练的模型,那么什么是预训练呢?举例子进行简单的介绍 假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新 ...
- 使用BERT预训练模型+微调进行文本分类
本文记录使用BERT预训练模型,修改最顶层softmax层,微调几个epoch,进行文本分类任务. BERT源码 首先BERT源码来自谷歌官方tensorflow版:https://github.co ...
- 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用
本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...
- 预训练模型——开创NLP新纪元
预训练模型--开创NLP新纪元 论文地址 BERT相关论文列表 清华整理-预训练语言模型 awesome-bert-nlp BERT Lang Street huggingface models 论文 ...
- BERT预训练模型的演进过程!(附代码)
1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Tr ...
- CNN基础框架简介
卷积神经网络简介 卷积神经网络是多层感知机的变种,由生物学家休博尔和维瑟尔在早期关于猫视觉皮层的研究发展而来.视觉皮层的细胞存在一个复杂的构造,这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野 ...
- Pytorch——BERT 预训练模型及文本分类
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...
- 我的Keras使用总结(3)——利用bottleneck features进行微调预训练模型VGG16
Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的 ...
随机推荐
- 十分钟理解Redux核心思想,过目不忘。
白话Redux工作原理.浅显易懂. 如有纰漏或疑问,欢迎交流. Redux 约法三章 唯一数据源(state) 虽然redux中的state与react没有联系,但可以简单理解为react组件中的th ...
- Cesium标点
let startPoint = this.viewer.entities.add( //viewer.entities.add 添加实体的方法 { name: '测量距离', //这个属性跟页面显示 ...
- jquery对象中 “冒号” 详解
冒号 可以理解为 “匹配” 或 “选取”的意思. $(":button") 表示匹配所有的按钮.$("input:checked")表示匹配所有选中的 ...
- 09-排序2 Insert or Merge(25 分)
According to Wikipedia: Insertion sort iterates, consuming one input element each repetition, and gr ...
- MySqL rownum 序号 类似于 oracle的rownum
mysql中没有 rownum 序号的功能,所以需要自己去实现序号的功能. @rownum 只是一个变量 可以换为 @i 等其他变量,但必须有@符号 SELECT @rownum:=@rownum+1 ...
- loadrunner(预测系统行为和性能的负载测试工具)
LoadRunner,是一种预测系统行为和性能的负载测试工具.通过以模拟上千万用户实施并发负载及实时性能监测的方式来确认和查找问题,LoadRunner能够对整个企业架构进行测试.企业使用LoadRu ...
- 前端每日实战:29# 视频演示如何不用 transition 和 animation 也能做网页动画
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/BxbQJj 可交互视频教程 此视频 ...
- 关于JAVA的环境变量和那些jar包
大家配置环境变量一般都是 JAVA_HOME:C:\Program Files (x86)\Java\jdk1.6.0_30; PATH:%JAVA_HOME%\bin; CLASSPATH:.;%J ...
- PAT_A1071#Speech Patterns
Source: PAT A1071 Speech Patterns (25 分) Description: People often have a preference among synonyms ...
- python 类和对象上
面向对象 Object Oriented 面向对象的学习: 面向对象的语法(简单,记忆就可以搞定) 面向对象的思想(稍难,需要一定的理解) 面向过程和面向对象的区别 面向过程开发,以函数作为基本结构使 ...