数论(lcm)
题意:求最小的lcm(a,b)的下标;
#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f3f3f3f3fLL
#define mod 1000000007
#define PI acos(-1)
using namespace std;
typedef long long ll ;
const int N = 1e7 + ;
int p[N] , n; int main()
{
int x , flaga , flagb ;//值,左下标,右下标
ll minv ;//最小lcm值
while(~scanf("%d" , &n))
{
memset(p , , sizeof(p));//标记数组
minv = INF ;
for(int i = ; i <= n ; i++)
{
scanf("%d" , &x);
if(p[x] && x < minv)//出现了两次且小于原lcm,更新
{
minv = x ;
flaga = p[x];
flagb = i ;
}
p[x] = i ;//标记该数出现
}
for(int i = ; i < N && i < minv ; i++)//遍历1-1e7+5数
{
ll v = ;
int pos ;
for(int j = i ; j < N && j < minv ; j+=i)//成倍数的遍历。
{
if(p[j])//该数出现
{
if(v==)//第一个数
{
v = j ;
pos = p[j];
}
else if(v / i * j < minv)//第二个数出现,且小于原lcm更新。
{
minv = v / i * j ;
flaga = pos ;
flagb = p[j];
}
else
{
break ;
}
}
}
}
if(flaga > flagb) swap(flaga , flagb);
cout << flaga << " " << flagb << endl;
} return ;
}
数论(lcm)的更多相关文章
- bzoj5105 晨跑 数论lcm
“无体育,不清华”.”每天锻炼一小时,健康工作五十年,幸福生活一辈子”在清华,体育运动绝对是同学们生活中 不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不过由于种种原因,每天都早 ...
- 数论---lcm和gcd
cd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=xykk,而lcm=xyk,所以ab=gcd*lcm. 所以求lcm ...
- HDU 4497 GCD and LCM (数论)
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...
- 简单数论总结1——gcd与lcm
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分 ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- [HDOJ5584]LCM Walk(数论,规律)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm ...
- HDU5584 LCM Walk 数论
LCM Walk Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
随机推荐
- HTML/CSS实现文字环绕图片布局
原文: https://blog.csdn.net/yiyelanxin/article/details/75006925 在一个图文并茂的网页上,文字环绕图片可以使布局美观紧凑,如何实现呢?有两种办 ...
- 在目标端重建sequence的脚本
select 'create sequence '||SEQUENCE_OWNER||'.'||sequence_name|| ' minvalue '||min_value|| ' maxvalue ...
- linux运维、架构之路-LVS负载均衡
一.LVS介绍 1.介绍 LVS是Linux Virtual Server的简写,是linux虚拟的服务器集群系统,可以在unix/linux平台下实现负载均衡集群功能,由章文嵩博 ...
- sql server 修改表字段
1.添加表说明 EXECUTE sp_addextendedproperty N'MS_Description','表说明',N'user',N'dbo',N'table',N'表名',NULL,NU ...
- 8:Spring Boot Shiro记住密码
1,添加Cookie 2,添加安全管理器中 3,配置记住我, 4 ,在登录页面中加我rememberMe复选框 /** * 1.配置Cookie对象 * 记住我的cookie:rememberMe * ...
- SQL 介绍和操作
1.什么是SQL SQL的全称是“结构话查询语句”(Structured Query Language ),是1974年有Boyce和chamberlin 提出来的.经过多年的发展,SQL语言已经成为 ...
- 多重背包的二进制优化——DP
#include<cstdio> #include<cstring> #include<algorithm> #define LL long long using ...
- Quartus_II官方教程-中文版之SignalTap II
非常实用 187-196 第十二章:调试 Quartus_II官方教程-中文版.pdf
- centos apache2.4.6 apache https配置
错误描述: SSL 接收到一个超出最大准许长度的记录. 错误代码:SSL_ERROR_RX_RECORD_TOO_LONG 原因: root@iZwz93telmwbh624e5zetqZ:~# ap ...
- 修改select的默认样式
在我们用select的时候,通常因为他的默认样式比较丑而用自己样式,那首先要去掉他的默认样式 去掉select的边框和点击时的蓝色边框 select{border: none;outline: non ...