所需解决的问题是,训练一个Logistic Regression系统,使之能够识别手写体数字1-10,每张图片为20px*20px的灰度图。训练样例的输入X是5000行400列的一个矩阵,每一行存储一张图片(20^2=400),共5000个训练样例,而y则为手写体所表示的数字1-10。

利用Logistic Regression进行多分类应用,其基础是将问题本身化解为z个二分类问题,其中z为类别的个数。第一步,将向量m*1维y扩展为矩阵m*z维矩阵Y,向量n+1维向量theta扩展为矩阵z*(n+1)维矩阵Theta。其意义是将一维数据转换至二维,以0,1表示,从而使我们能够利用二分类来解决问题。如下图:

第二步,利用内置函数fmincg来求解10组问题的最佳theta值,构建10*401维theta_all矩阵:

function [all_theta] = oneVsAll(X, y, num_labels, lambda)
m = size(X, 1);
n = size(X, 2); all_theta = zeros(num_labels, n + 1); % Add ones to the X data matrix
X = [ones(m, 1) X]; % loop for every number, we train the theta of every number respectively.
initial_theta = zeros(n+1,1);
options = optimset('GradObj', 'on', 'MaxIter', 50); for(i=1:num_labels) y_b=(y==i); all_theta(i,:) = fmincg (@(t)(lrCostFunction(t, X,y_b, lambda)), ...
initial_theta, options); endfor

其中用到的lrCostFunction函数如下:

function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples
J = 0;
grad = zeros(size(theta)); tmp=ones(m,1);
h = sigmoid(X*theta);
h1=log(h);
h2=log(tmp-h); y2=tmp-y; J=(y'*h1+y2'*h2)/(-m); theta(1)=0; J+=theta'*theta*lambda/(2*m);
grad=((X'*(h-y))+lambda*theta)/m; grad = grad(:); end

第三步,合并该问题,构建“可能性矩阵”,然后选择可能性最大的项作为系统的输出:

function p = predictOneVsAll(all_theta, X)

m = size(X, 1);
num_labels = size(all_theta, 1); p = zeros(size(X, 1), 1); X = [ones(m, 1) X]; probMatrix = X*all_theta';
[pVector,p] = max(probMatrix,[],2); end

使用Logistic Regression Algorithm进行多分类数字识别的Octave仿真的更多相关文章

  1. Logistic Regression Algorithm解决分类问题

    在线性回归算法中,我们看到,在training set中,输入矩阵X与向量y的值都是连续的.所以在二维空间中,我们可以用一条直线去模拟X与y的变化关系,寻找参数向量theta的取值.如根据房屋面积预测 ...

  2. Logistic Regression Algorithm

    逻辑回归算法LR. 简介 逻辑回归是机器学习从统计学领域借鉴的另一种技术.它是二进制分类问题的首选方法(有两个类值的问题).   Logistic回归就像线性回归,目标是找到权重每个输入变量的系数值. ...

  3. 数字锁相环Octave仿真

    clc; clear all; % 仿真数据长度 SimLens = 1000; % 载波信号 Fs = 2400; Ts = 1 / Fs; Fsig = 60; % 随机初相 Delta_Phas ...

  4. 分类算法之逻辑回归(Logistic Regression

    分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...

  5. [OpenCV] Samples 06: [ML] logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  6. [OpenCV] Samples 06: logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  7. Logistic Regression vs Decision Trees vs SVM: Part II

    This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...

  8. 线性模型(3):Logistic Regression

    此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一)Logistic Regression 原理 对于分类问题,假设我们想得到的结果不是(x属于某一类)这种形式 ...

  9. Logistic Regression 算法向量化实现及心得

    Author: 相忠良(Zhong-Liang Xiang) Email: ugoood@163.com Date: Sep. 23st, 2017 根据 Andrew Ng 老师的深度学习课程课后作 ...

随机推荐

  1. (五:NIO系列) Reactor模式

    出处:Reactor模式 本文目录 1. 为什么是Reactor模式 2. Reactor模式简介 3. 多线程IO的致命缺陷 4. 单线程Reactor模型 4.1. 什么是单线程Reactor呢? ...

  2. SpringMVC处理器拦截器 Interceptor

    拦截器概念 Java 里的拦截器是动态拦截action调用的对象.它提供了一种机制可以使开发者可以定义在一个action执行的前后执行的代码,也可以在一个action执行前阻止其执行,同时也提供了一种 ...

  3. 开发chrome插件(扩展)

    官方文档 https://developer.chrome.com/extensions/getstarted.html [干货]Chrome插件(扩展)开发全攻略 http://blog.haoji ...

  4. ZeroAccess分析

    来源:http://bbs.pediy.com/showthread.php?t=141124&highlight=ZeroAccess 总序这分成四个部分的系列文章,是一个完全的一步一步来分 ...

  5. jsp页面随页面初始化加载js函数

    1 <%@ page language="java" import="java.util.*" pageEncoding="gbk"% ...

  6. TensorFlow学习笔记1:graph、session和op

    graph即tf.Graph(),session即tf.Session(),很多人经常将两者混淆,其实二者完全不是同一个东西. graph定义了计算方式,是一些加减乘除等运算的组合,类似于一个函数.它 ...

  7. POJ 2104 区间第k大(主席树)

    题目链接:http://poj.org/problem?id=2104 题目大意:给定还有n个数的序列,m个操作,每个操作含有l,r,k,求区间[l,r]第k大 解题思路:线段树只能维护序列的最大值最 ...

  8. struts2的相关知识(实现原理、拦截器)

    struts2的实现原理 客户端初始化一个指向Servlet容器(例如Tomcat)的请求 这个请求经过一系列的过滤器(Filter)(这些过滤器中有一个叫做ActionContextCleanUp的 ...

  9. centos上部署flask项目之环境配置-MySQL的安装

    1.添加mysql 的yum源 wget 'https://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm'    rpm ...

  10. File类常用的方法与字节流类方法简介

    File类常用的方法 获取功能的方法 public String getAbsolutePath() :返回此File的绝对路径名字符串. public String getPath() :将此Fil ...