数据倾斜:由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点。map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜。

Hadoop计算框架的特性:

  • 不怕数据大,怕数据倾斜;
  • job数比较多的作业运行效率相对比较低,如子查询较多;
  • 不会发生数据倾斜的情况:sum,count,max,min

会发生数据倾斜的情况:group by,count(distinct),小表关联大表

MapReduce提供Partitioner接口,它的作用就是根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理。默认对key hash后再以reduce task数量取模。默认的取模方式只是为了平均reduce的处理能力,如果用户自己对Partitioner有需求,可以订制并设置到job上。

用hadoop程序进行数据关联时,常碰到数据倾斜的情况,这里提供一种解决方法。

自己实现partition类,用key和value相加取hash值:

方式1:

源代码:

public int getPartition(K key, V value,

                          int numReduceTasks) {

    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;

  }

修改后

public int getPartition(K key, V value,

                          int numReduceTasks) {

    return (((key).hashCode()+value.hashCode()) & Integer.MAX_VALUE) % numReduceTasks;

  }

方式2:

public class HashPartitioner<K, V> extends Partitioner<K, V> {

private int aa= 0;

  /** Use {@link Object#hashCode()} to partition. */

  public int getPartition(K key, V value,

                          int numReduceTasks) {

    return (key.hashCode()+(aa++) & Integer.MAX_VALUE) % numReduceTasks;

  }

优化常用手段:

  • 减少job数(合并MapReduce,用Multi-group by)
  • 设置合理的task数,能有效提升性能
  • 数据量大,慎用count(distinct)
  • 对小文件进行合并

MapReduce数据倾斜的解决方式的更多相关文章

  1. hive数据倾斜的解决办法

    数据倾斜是进行大数据计算时常见的问题.主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致. 在hive中遇到数据倾 ...

  2. Hive数据倾斜和解决办法

    转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中   ...

  3. spark数据倾斜与解决方法

    一.数据倾斜 数据倾斜一般发生在对数据进行重新划分以及聚合的处理过程中.执行Spark作业时,数据倾斜一般发生在shuffle过程中,因为Spark的shuffle过程需要进行数据的重新划分处理.在执 ...

  4. 中控考勤机使用 zkemkeeper SDK订阅考勤数据事件失效解决方式

    问题 前同事编写的对中控考勤机数据集成项目当中,打卡数据不能实时进行上传到平台当中,一直靠定时全量上传来同步数据. 阅读代码后,发现代码中有实时上传数据的逻辑,但是运行一段时间后,中控zkemkeep ...

  5. Hadoop数据倾斜及解决办法

    数据倾斜:就是大量的相同key被partition分配到一个分区里,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间 ...

  6. Android Viewpager加Fragment做界面切换时数据消失的解决方式

    今天遇到多个Fragment切换,回来后页面空白的情况,找到这个博客方法设置了一下,就可以了 vpAdapter = new VpAdapter(getSupportFragmentManager() ...

  7. [MapReduce_add_3] MapReduce 通过分区解决数据倾斜

    0. 说明 数据倾斜及解决方法的介绍与代码实现 1. 介绍 [1.1 数据倾斜的含义] 大量数据发送到同一个节点进行处理,造成此节点繁忙甚至瘫痪,而其他节点资源空闲 [1.2 解决数据倾斜的方式] 重 ...

  8. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

  9. hadoop 数据倾斜

    数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有 ...

随机推荐

  1. HDU-4219-Randomization?

    题目描述 给定一棵\(n\)个节点的树,每条边的权值为\([0,L]\)之间的随机整数,求这棵树两点之间最长距离不超过\(S\)的概率. Input 第一行三个整数\(n,L,S\) 接下来n-1行, ...

  2. selenium获取微博用户粉丝数

    selenum的安装 selenium文档 获取微博用户粉丝数 from selenium import webdriver from time import sleep wd = webdriver ...

  3. 使用RSA算法对接口参数签名及验签

    在不同的服务器或系统之间通过API接口进行交互时,两个系统之间必须进行身份的验证,以满足安全上的防抵赖和防篡改. 通常情况下为了达到以上所描述的目的,我们首先会想到使用非对称加密算法对传输的数据进行签 ...

  4. 剑指offer-最小的K个数-时间效率-排序-python

    题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 这就是排序题(将结果的最小K值输出)   # -*- coding ...

  5. vue在组件中使用v-model

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 4种vue当中的指令和它的用法

    1.v-if:判断是否隐藏 2.v-for:数据循环 3.v-bind:class:绑定一个属性 4.v-model:实现数据双向绑定 这里重点说明一个v-if和v-show的区别: 共同点:都是通过 ...

  7. Assets.xcassets的详细使用方法

    开始之前,首先回顾一下iOS7初体验(1)——第一个应用程序HelloWorld中的一张图,如下所示: 本文分享一下Images.xcassets的体验~_~ 1. 打开此前使用过的HelloWorl ...

  8. hive模拟数据

    人员表 id,姓名,爱好,住址 1,小明1,lol-book-movie,beijing:mashibing-shanghai:pudong 2,小明2,lol-book-movie,beijing: ...

  9. 说说关于洛谷P4779迪杰斯特拉的堆优化

    众所周知,这题必须要用堆优化的迪杰斯特拉的堆优化才能过,否则60分(错失一等奖) 我没有得过一等奖但还是要说: P4779 全过程: struct node//堆中的比较函数 { int dis; i ...

  10. oracle pl/sql 程序设计 历史笔记整理

    20131016 周三 oracle pl/sql 程序设计 第2章 创建并运行pl/sql代码 sqlplus yjkhecc/yjkhecc@10.85.23.92:1521/orcl 在java ...