[USACO17DEC]Barn Painting (树形$dp$)
题目链接
Solution
比较简单的树形 \(dp\) 。
\(f[i][j]\) 代表 \(i\) 为根的子树 ,\(i\) 涂 \(j\) 号颜色的方案数。
转移很显然 :
\]
其中 \(k\) 代表它的子节点。 其他两种颜色以此类推。
但需要注意的是对于颜色固定的点,除固定的颜色外,其他两种颜色的方案要赋为 \(0\) 。
PS : 要开 longlong ,以及还要 mod 1000000007 。
Code
#include<bits/stdc++.h>
#define N 100010
#define ll long long
#define inf 0x3f3f3f3f
#define mod 1000000007
using namespace std;
void in(ll &x)
{
char ch=getchar();ll f=1,w=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
x=f*w; return;
}
struct sj{
ll to,next;
}a[N*2];
ll head[N],size;
ll n,col[N],k;
void add(ll x,ll y)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
}
ll f[N][4];
void dfs(ll x,ll fr)
{
f[x][1]=f[x][2]=f[x][3]=1;
for(ll i=head[x];i;i=a[i].next)
{
ll tt=a[i].to;
if(tt==fr)continue;
dfs(tt,x);
f[x][1]*=(f[tt][2]+f[tt][3])%mod;
f[x][1]%=mod;
f[x][2]*=(f[tt][1]+f[tt][3])%mod;
f[x][2]%=mod;
f[x][3]*=(f[tt][2]+f[tt][1])%mod;
f[x][3]%=mod;
}
if(col[x])
for(int i=1;i<=3;i++)
if(col[x]!=i)f[x][i]=0;
return;
}
int main()
{
in(n); in(k);
for(ll i=1;i<n;i++)
{
ll x,y; in(x),in(y);
add(x,y),add(y,x);
}
for(ll i=1;i<=k;i++)
{
ll x,y; in(x),in(y);
col[x]=y;
}
dfs(1,0);
cout<<(f[1][1]%mod+f[1][2]%mod+f[1][3]%mod)%mod<<endl;
return 0;
}
[USACO17DEC]Barn Painting (树形$dp$)的更多相关文章
- [USACO17DEC] Barn Painting - 树形dp
设\(f[i][j]\)为\(i\)子树,当\(i\)为\(j\)时的方案数 #include <bits/stdc++.h> using namespace std; #define i ...
- [USACO17DEC] Barn Painting
题目描述 Farmer John has a large farm with NN barns (1 \le N \le 10^51≤N≤105 ), some of which are alread ...
- Luogu4084 [USACO17DEC]Barn Painting (树形DP)
数组越界那个RE+WA的姹紫嫣红的... 乘法原理求种类数,类似于没有上司的舞会. #include <iostream> #include <cstdio> #include ...
- Codeforces - 1198D - Rectangle Painting 1 - dp
https://codeforces.com/contest/1198/problem/D 原来是dp的思路,而且是每次切成两半向下递归.好像在哪里见过类似的,貌似是紫书的样子. 再想想好像就很显然的 ...
- ZOJ-3725 Painting Storages DP
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3725 n个点排列,给每个点着色,求其中至少有m个红色的点连续的数 ...
- [USACO 2017DEC] Barn Painting
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5141 [算法] 树形DP 时间复杂度 : O(N) [代码] #include< ...
- [CodeForces 300D Painting Square]DP
http://codeforces.com/problemset/problem/300/D 题意:每一次操作可以选一个正方形,令边长为n,如果n为奇数那么可以从中间画一个十字,分成4个大小相等的边长 ...
- Educational Codeforces Round 67 E.Tree Painting (树形dp)
题目链接 题意:给你一棵无根树,每次你可以选择一个点从白点变成黑点(除第一个点外别的点都要和黑点相邻),变成黑点后可以获得一个权值(白点组成连通块的大小) 问怎么使权值最大 思路:首先,一但根确定了, ...
- 我的刷题单(8/37)(dalao珂来享受切题的快感
P2324 [SCOI2005]骑士精神 CF724B Batch Sort CF460C Present CF482A Diverse Permutation CF425A Sereja and S ...
随机推荐
- 010-elasticsearch5.4.3【四】-聚合操作【一】-度量聚合【metrics】-min、max、sum、avg、count
一.概述 度量类型聚合主要针对的number类型的数据,需要ES做比较多的计算工作 参考向导:地址 import org.elasticsearch.search.aggregations.Aggre ...
- 07 归档模式 Active redo log丢失或损坏的恢复
环境同上一篇 模拟处于active状态的redo log损坏 sesion 1 SYS@ orcl >/ GROUP# THREAD# SEQUENCE# BYTES BLOCKSIZE MEM ...
- PHP 常用函数-url函数
urlencode 和 rawurlencode urlencode 和 rawurlencode 两个函数都用来编码 URL 字符串.除了 -_. 之外的所有非字母数字字符都将被替换成百分号(%)后 ...
- 在Window平台是模拟Linux的Shell环境
在Linux平台模拟Linux的shell环境,可以通过一个软件实现:Cygwin(点击进入官网下载好即可),如下图(选择对应的版本进行下载): 安装: 1. 双击运行下载的安装包(选择从网络安装), ...
- 初探LINUX之--基础知识篇
一 Linux哲学思想 1 一切都是一个文件(包含硬件) 2 小型,单一用途的程序 3 链接程序,共同完成复杂的任务 4 避免令人困惑的用户界面 5 配置数据存储在文本中 二 Linux重要概念 Sh ...
- [2019杭电多校第三场][hdu6608]Fansblog
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6608 大致题意是比p小的最大素数q,求q!%p的值. 由威尔逊定理开始推: $(p-1)!\equiv ...
- Codeforces 979D (STL set)(不用Trie简单AC)
题面: 传送门 题目大意: 给定一个空集合,有两种操作: 一种是往集合中插入一个元素x,一种是给三个数x,k,s,问集合中是否存在v,使得gcd(x,v)%k==0,且x+v<=s若存在多个满足 ...
- python 更快地判断数字的奇数还是偶数
使用 按位与运算符(&) 将能更加快速地判断一个整数是奇数还是偶数 使用举例如下: def check_number(n): if n & 1: return '奇数' else: r ...
- 放弃等待,故障到来:少一个 await 引发的 tcp 连接泄漏故障
更新:后来升级至 .NET Core 2.2 Preview 3 ,并将 System.Net.Http 升级至 4.3.4 之后没出现这个问题,问题与 https://github.com/dotn ...
- openstack stein部署手册 5. placement
# 建立数据库用户及权限 create database placement; grant all privileges on placement.* to placement@'localhost' ...