HDU-6705 Path
Description
You have a directed weighted graph with n vertexes and m edges. The value of a path is the sum of the weight of the edges you passed. Note that you can pass any edge any times and every time you pass it you will gain the weight.
Now there are q queries that you need to answer. Each of the queries is about the k-th minimum value of all the paths.
Input
The input consists of multiple test cases, starting with an integer t (1≤t≤100), denoting the number of the test cases.
The first line of each test case contains three positive integers n,m,q. (\(1≤n,m,q≤5∗10^4\))
Each of the next m lines contains three integers ui,vi,wi, indicating that the i−th edge is from ui to vi and weighted wi.(1≤ui,vi≤n,1≤wi≤109)
Each of the next q lines contains one integer k as mentioned above.(\(1≤k≤5∗10^4\))
It's guaranteed that \(Σn ,Σm, Σq,Σmax(k)≤2.5∗10^5\) and max(k) won't exceed the number of paths in the graph.
Output
For each query, print one integer indicates the answer in line.
Sample Input
1
2 2 2
1 2 1
2 1 2
3
4
Sample Output
3
3
题解
给定一张有向图,q次询问,每次询问第k小的路径长度。
离线,预处理出最大的k范围内的所有路径长度。先将所有边按边权排序,用一个set存储当前可以成为答案的边,且set的最大的大小为maxk,每次从set中取出w最小的边,看看能否更新set中的元素,不能更新则break(边权从小到大排序,小边权无法更新之后边权也无法更新),对set中的元素都做一次这样的处理后,我们就得到了[1,maxk]的答案,输出询问即可,复杂度\(O(k*log(m+k))\)
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e4 + 50;
struct node {
int v; ll w;
node (int v = 0, int w = 0): v(v), w(w) {}
bool operator < (const node &b) const {
return w < b.w;
}
};
vector<node> G[N];
struct Edge {
int u, v; ll w;
int id;
Edge(int u = 0, int v = 0, ll w = 0, int id = 0): u(u), v(v), w(w), id(id) {}
bool operator < (const Edge &b) const {
if (w == b.w)
if (u == b.u)
if (v == b.v)
return id < b.id;
else return v < b.v;
else return u < b.u;
else return w < b.w;
}
bool operator == (const Edge &b) const {
return w == b.w && u == b.u && v == b.v && id == b.id;
}
};
int Q[N];
ll ans[N];
int main() {
int t; scanf("%d", &t);
while (t--) {
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) G[i].clear();
set<Edge> st; st.clear();
int cnt = 0;
for (int i = 1; i <= m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
G[u].push_back(node(v, w));
st.insert(Edge(u, v, w, ++cnt));
}
for (int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end());
int maxk = 0;
for (int i = 1; i <= q; i++) {
scanf("%d", &Q[i]);
maxk = max(maxk, Q[i]);
}
while (st.size() > maxk) st.erase(st.end());
for (int i = 1; i <= maxk; i++) {
Edge now = *st.begin();
st.erase(st.begin());
ans[i] = now.w;
if (i == maxk) break;
int u = now.v;
for (int j = 0; j < G[u].size(); j++) {
int v = G[u][j].v;
ll w = G[u][j].w;
if (i + st.size() < maxk) st.insert(Edge(now.u, v, now.w + w, ++cnt));
else {
set<Edge>::iterator it = st.end(); it--;
Edge last = *it;
if (now.w + w < last.w) {
st.erase(it);
st.insert(Edge(u, v, now.w + w, ++cnt));
}
else break;
}
}
}
for (int i = 1; i <= q; i++) printf("%lld\n", ans[Q[i]]);
}
return 0;
}
HDU-6705 Path的更多相关文章
- HDU 6582 Path
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- HDU - 6582 Path (最短路+最小割)
题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...
- [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others) Mem ...
- 2019CCPC网络赛
^&^ (HDU 6702) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 2019CCPC网络预选赛 八道签到题题解
目录 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 6702 & 6703 array 6704 K-th occurrence 6705 path 6706 huntian o ...
- hdu 1973 Prime Path
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...
- hdu 1839 Delay Constrained Maximum Capacity Path 二分/最短路
Delay Constrained Maximum Capacity Path Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu. ...
- hdu 3631 Shortest Path(Floyd)
题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...
- HDU 5492(DP) Find a path
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意是有一个矩阵,从左上角走到右下角,每次能向右或者向下,把经过的数字记下来,找出一条路径是 ...
- [HDU 1973]--Prime Path(BFS,素数表)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Time Limit: 5000/1000 MS (Java/Others ...
随机推荐
- 【计算机视觉】HDR之tone mapping简介
tone Mapping原是摄影学中的一个术语,因为打印相片所能表现的亮度范围不足以表现现实世界中的亮度域,而如果简单的将真实世界的整个亮度域线性压缩到照片所能表现的亮度域内,则会在明暗两端同时丢失很 ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- 本地代码推送到远程git仓库
# 1. 在远程新建一个代码仓库(如码云,github..) # 2. 将本地代码提交 git init git add * git commit -am "first init" ...
- CentOS卸载lamp环境的步骤
学习PHP的时候需要在CentOS系统下安装lamp环境,安装容易卸载就没那么简单了,因为lamp由Apache.MySQL.PHP三个部分构成,需要逐个卸载,小编就给大家介绍下CentOS卸载lam ...
- Python 入门之 内置模块 -- time模块
Python 入门之 内置模块 -- time模块 1.time模块 time翻译过来就是时间,这个模块是与时间相关的模块 import time # 内置模块 -- 标准库 (1)time.ti ...
- Print out Android kernel log
adb shell "su -c 'cat /proc/kmsg'" | tee kernel.log adb shell cat /proc/last_kmsg > las ...
- 原生js事件委托(事件代理)方法扩展
原生js事件委托(事件代理)方法扩展: 通过Node底层原型扩展委托方法 /** * 事件委托方法 * @param eventName {string}:事件名称,如'click' * @param ...
- Spring boot项目集成Neo4j
第一步,创建Springboot工程 使用Eclipse 创建Maven项目,并修改pom.xml文件为: <?xml version="1.0" encoding=&quo ...
- 原生ajax与伪ajax
原生ajax源码 function GetXHR(){ var xhr = null; if(XMLHttpRequest){ xhr = new XMLHttpRequest(); #如果没有XML ...
- Asp.net MVC 发布到IIS6
1.发布网站 2.打开IIS,添加网站 3.修改程序池,改为.net 4.0 4.添加虚拟目录(及添加aspnet_isapi.dll文件,该文件目录在“C:\Windows\Microsoft.NE ...