HDU-6705 Path
Description
You have a directed weighted graph with n vertexes and m edges. The value of a path is the sum of the weight of the edges you passed. Note that you can pass any edge any times and every time you pass it you will gain the weight.
Now there are q queries that you need to answer. Each of the queries is about the k-th minimum value of all the paths.
Input
The input consists of multiple test cases, starting with an integer t (1≤t≤100), denoting the number of the test cases.
The first line of each test case contains three positive integers n,m,q. (\(1≤n,m,q≤5∗10^4\))
Each of the next m lines contains three integers ui,vi,wi, indicating that the i−th edge is from ui to vi and weighted wi.(1≤ui,vi≤n,1≤wi≤109)
Each of the next q lines contains one integer k as mentioned above.(\(1≤k≤5∗10^4\))
It's guaranteed that \(Σn ,Σm, Σq,Σmax(k)≤2.5∗10^5\) and max(k) won't exceed the number of paths in the graph.
Output
For each query, print one integer indicates the answer in line.
Sample Input
1
2 2 2
1 2 1
2 1 2
3
4
Sample Output
3
3
题解
给定一张有向图,q次询问,每次询问第k小的路径长度。
离线,预处理出最大的k范围内的所有路径长度。先将所有边按边权排序,用一个set存储当前可以成为答案的边,且set的最大的大小为maxk,每次从set中取出w最小的边,看看能否更新set中的元素,不能更新则break(边权从小到大排序,小边权无法更新之后边权也无法更新),对set中的元素都做一次这样的处理后,我们就得到了[1,maxk]的答案,输出询问即可,复杂度\(O(k*log(m+k))\)
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e4 + 50;
struct node {
int v; ll w;
node (int v = 0, int w = 0): v(v), w(w) {}
bool operator < (const node &b) const {
return w < b.w;
}
};
vector<node> G[N];
struct Edge {
int u, v; ll w;
int id;
Edge(int u = 0, int v = 0, ll w = 0, int id = 0): u(u), v(v), w(w), id(id) {}
bool operator < (const Edge &b) const {
if (w == b.w)
if (u == b.u)
if (v == b.v)
return id < b.id;
else return v < b.v;
else return u < b.u;
else return w < b.w;
}
bool operator == (const Edge &b) const {
return w == b.w && u == b.u && v == b.v && id == b.id;
}
};
int Q[N];
ll ans[N];
int main() {
int t; scanf("%d", &t);
while (t--) {
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) G[i].clear();
set<Edge> st; st.clear();
int cnt = 0;
for (int i = 1; i <= m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
G[u].push_back(node(v, w));
st.insert(Edge(u, v, w, ++cnt));
}
for (int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end());
int maxk = 0;
for (int i = 1; i <= q; i++) {
scanf("%d", &Q[i]);
maxk = max(maxk, Q[i]);
}
while (st.size() > maxk) st.erase(st.end());
for (int i = 1; i <= maxk; i++) {
Edge now = *st.begin();
st.erase(st.begin());
ans[i] = now.w;
if (i == maxk) break;
int u = now.v;
for (int j = 0; j < G[u].size(); j++) {
int v = G[u][j].v;
ll w = G[u][j].w;
if (i + st.size() < maxk) st.insert(Edge(now.u, v, now.w + w, ++cnt));
else {
set<Edge>::iterator it = st.end(); it--;
Edge last = *it;
if (now.w + w < last.w) {
st.erase(it);
st.insert(Edge(u, v, now.w + w, ++cnt));
}
else break;
}
}
}
for (int i = 1; i <= q; i++) printf("%lld\n", ans[Q[i]]);
}
return 0;
}
HDU-6705 Path的更多相关文章
- HDU 6582 Path
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- HDU - 6582 Path (最短路+最小割)
题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...
- [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others) Mem ...
- 2019CCPC网络赛
^&^ (HDU 6702) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 2019CCPC网络预选赛 八道签到题题解
目录 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 6702 & 6703 array 6704 K-th occurrence 6705 path 6706 huntian o ...
- hdu 1973 Prime Path
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...
- hdu 1839 Delay Constrained Maximum Capacity Path 二分/最短路
Delay Constrained Maximum Capacity Path Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu. ...
- hdu 3631 Shortest Path(Floyd)
题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...
- HDU 5492(DP) Find a path
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意是有一个矩阵,从左上角走到右下角,每次能向右或者向下,把经过的数字记下来,找出一条路径是 ...
- [HDU 1973]--Prime Path(BFS,素数表)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Time Limit: 5000/1000 MS (Java/Others ...
随机推荐
- python 使用 with open() as 读写文件
读文件: 要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符: >>> f = open('E:\python\python\test.tx ...
- TensorFlow2.0矩阵与向量的加减乘
1.矩阵加法使用 a = np.random.random((3,3))b = np.random.randint(0,9,(3,3)) ad = tf.add(a,b) 2.矩阵乘法注意 # ten ...
- Canvas入门05-渐变颜色
线性渐变API: ctx.createLinearGradient(double x1, double y1, double x2, double y2) 创建一个渐变实例 (x1, y1) 渐变的起 ...
- Springboot2.x集成Redis集群模式
Springboot2.x集成Redis集群模式 说明 Redis集群模式是Redis高可用方案的一种实现方式,通过集群模式可以实现Redis数据多处存储,以及自动的故障转移.如果想了解更多集群模式的 ...
- java 接入微信 spring boot 接入微信
1.pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...
- [转帖]kafka基础知识点总结
kafka基础知识点总结 https://blog.csdn.net/qq_25445087/article/details/80270790 需要学习. 1.kafka简介 kafka是由Apach ...
- 客户端通过url向后端传递参数
在前端我们不仅可以通过get请求携带参数的方式向服务端传数据: https://127.0.0.1/index/?id=1&name=alex Django也允许通过,path路径的方式向se ...
- redis持久化机制与过期策略
RDB的持久化策略 (快照方式,默认持久化方式): 按照规则定时将内存中的数据同步到磁盘,它有以下4个触发场景. 1. 自己配置的快照规则 vim /redis/bin/ redis.conf:按照 ...
- thinkphp5 隐藏前台入口文件index.php 后台入口文件admin.php不隐藏
情景:应用目录下有两个模块 admin(后台) 和 home(前台) 需求:1.访问前台(home)时隐藏index.php 即 域名/home/前台控制器/前台控制器里的方法 这样的访问模式 2. ...
- 锋利的jQuery ——jQuery中的事件和动画(四)
一.jQuery中的事件 1)加载DOM $(document).ready()和window.onload的区别 1>执行时机 $(document).ready(){} 方法内注册的事件, ...