题目描述

欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:

Start:25 7

Stan:11 7

Ollie:4 7

Stan:4 3

Ollie:1 3

Stan:1 0

Stan赢得了游戏的胜利。

现在,假设他们完美地操作,谁会取得胜利呢?

输入输出格式

输入格式:

第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)

输出格式:

对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”

输入输出样例

输入样例#1:

2
25 7
24 15
输出样例#1:

Stan wins
Ollie wins

对于最初的状态a,b
若a>=2b,则此时先手者有两种选择,必将转向至少一个必败态,故此时为必胜态;
若a==b,显然为必胜态。
博弈搜索即可!
 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; int n,x,y; bool check(int a,int b){
if(a<b) swap(a,b);
if(a==b||a>=(b<<)) return ;
return !check(a-b,b);
} int main(){
scanf("%d",&n);
while(n--){
scanf("%d%d",&x,&y);
puts(check(x,y)?"Stan wins":"Ollie wins");
}
return ;
}

luoguP1290 欧几里德的游戏 [博弈论]的更多相关文章

  1. P1290 【欧几里德的游戏】

    P1290 [欧几里德的游戏] 真·做题全凭感性 从题目中很容易看出 这是一道\(Gcd\)的题 同时又结合了一些略略的博弈论(丢下锅跑真爽 我们看,辗转相减的\(a,b\)一共只有两种情况 \(a- ...

  2. P1290 欧几里德的游戏

    P1290 欧几里德的游戏 原本不想写的,但细节有些多qwq,还是放上吧. 假设a严格大于b 当a<b*2时,只有一种方法往下走:否则就可以有多种方法,并且一定至少有一种可以使自己必胜,因为可以 ...

  3. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  4. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  5. 洛谷——P1290 欧几里德的游戏

    P1290 欧几里德的游戏 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的 ...

  6. P1290 欧几里德的游戏(洛谷)

    欧几里德的两个后代 Stan 和 Ollie 正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数 M 和 N,从 Stan 开始,从其中较大的一个数,减去较小的数的正整数倍,当然, ...

  7. 【Foreign】石子游戏 [博弈论]

    石子游戏 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output 输出T行,表示每组的答案. Sample Input 3 ...

  8. BZOJ 1022 Luogu P4279 [SHOI2008]小约翰的游戏 (博弈论)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=1022 (luogu) https://www.luogu.org/pro ...

  9. LUOGU P1290 欧几里德的游戏

    题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...

随机推荐

  1. Android中通过进程注入技术修改广播接收器的优先级

    前言 这个周末又没有吊事,在家研究了如何通过进程的注入技术修改广播接收器的优先级,关于这个应用场景是很多的,而且也很重要,所以就很急的去fixed了. Android中的四大组件中有一个广播:Broa ...

  2. Security基础(一):Linux基本防护措施、使用sudo分配管理权限、提高SSH服务安全

    一.Linux基本防护措施 目标: 本案例要求练习Linux系统的基本防护措施,完成以下任务: 修改用户zhangsan的账号属性,设置为2015-12-31日失效(禁止登录) 锁定用户lisi的账户 ...

  3. Python基础(一):程序输入输出、判断合法用户、编写判断成绩的程序

    一.程序输入输出 目标: 编写login.py脚本,实现以下目标: 提示用户输入用户名 将用户名保存在变量中 在屏幕上显示欢迎用户的信息 方案: 编写程序时,很多情况下都需要程序与用户交互.在pyth ...

  4. BZOJ 3653: 谈笑风生(主席树)

    传送门 解题思路 首先对于一个\(a\)来说,要求\(b\)和\(c\),那么\(a,b,c\)一定在一条链上.把\(b\)分类讨论,如果\(b\)是\(a\)的祖宗,这个方案数就很好统计了,就是\( ...

  5. 解析crontab php自动运行的方法

    crontab是linux自带的一个命令 使php自动运行的方法php自动运行有很多方法,这里分以下DZ以及一些通过系统完成的方法和直接触发运行驻留系统的方法.Discuz后台有个计划任务,可以使ph ...

  6. 前端每日实战:81# 视频演示如何用纯 CSS 创作一个变色旋转动画

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/ejZWKL 可交互视频 此视频是可 ...

  7. (转)深入剖析Java中的装箱和拆箱

    转:https://www.cnblogs.com/dolphin0520/p/3780005.html 深入剖析Java中的装箱和拆箱 自动装箱和拆箱问题是Java中一个老生常谈的问题了,今天我们就 ...

  8. Eclipse Missing artifact jdk.tools:jdk.tools:jar:1.6

    Missing artifact jdk.tools:jdk.tools:jar:1.6 问题出在Eclipse Maven的支持上,在Eclipse下,java.home变量设置为用于启动Eclip ...

  9. springMvc注册时图形验证码完整代码与详细步骤``````后续更新注册时对密码进行加密

      第一使用 画图软件制作图片 ,文件名就是验证码    ------用户的实体类 import java.util.Date; public class Member {    private in ...

  10. MySQL总结01

    window删除MySQL服务 cmd下执行 sc delete MySQL 登陆登出 登陆: mysql -uroot -ppasswd -h host 退出登陆 mysqladmin -uroot ...