副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。

视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。

视图一般发生在:

  • 1、numpy 的切片操作返回原数据的视图。
  • 2、调用 ndarray 的 view() 函数产生一个视图。

副本一般发生在:

  • Python 序列的切片操作,调用deepCopy()函数。
  • 调用 ndarray 的 copy() 函数产生一个副本。

1、无复制

简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。

此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。

 import numpy as np
a = np.arange(6)
print('我们的数组是:')
print(a)
print('调用 id() 函数:')
print(id(a))
print('a 赋值给 b:')
b = a
print(b)
print('b 拥有相同 id():')
print(id(b))
print('修改 b 的形状:')
b.shape = (3, 2)
print(b)
print('a 的形状也修改了:')
print(a)

执行结果:

我们的数组是:
[0 1 2 3 4 5]
调用 id() 函数:
1463892179824
a 赋值给 b:
[0 1 2 3 4 5]
b 拥有相同 id():
1463892179824
修改 b 的形状:
[[0 1]
[2 3]
[4 5]]
a 的形状也修改了:
[[0 1]
[2 3]
[4 5]]

2、视图或浅拷贝

ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。

 import numpy as np

 # 最开始 a 是个 3X2 的数组
a = np.arange(6).reshape(3, 2)
print('数组 a:')
print(a)
print('创建 a 的视图:')
b = a.view()
print(b)
print('两个数组的 id() 不同:')
print('a 的 id():')
print(id(a))
print('b 的 id():')
print(id(b))
# 修改 b 的形状,并不会修改 a
b.shape = (2, 3)
print('b 的形状:')
print(b)
print('a 的形状:')
print(a)

执行结果:

数组 a:
[[0 1]
[2 3]
[4 5]]
创建 a 的视图:
[[0 1]
[2 3]
[4 5]]
两个数组的 id() 不同:
a 的 id():
2213940021408
b 的 id():
2213969165728
b 的形状:
[[0 1 2]
[3 4 5]]
a 的形状:
[[0 1]
[2 3]
[4 5]]

3、使用切片创建视图修改数据会影响到原始数组:

 import numpy as np
arr = np.arange(12)
print('我们的数组:')
print(arr)
print('创建切片:')
a = arr[3:]
b = arr[3:]
a[1] = 123
b[2] = 234
print(arr)
print(id(a), id(b), id(arr[3:]))

执行结果:

我们的数组:
[ 0 1 2 3 4 5 6 7 8 9 10 11]
创建切片:
[ 0 1 2 3 123 234 6 7 8 9 10

变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。

4、副本或深拷贝

ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

 import numpy as np
a = np.array([[10, 10], [2, 3], [4, 5]])
print('数组 a:')
print(a)
print('创建 a 的深层副本:')
b = a.copy()
print('数组 b:')
print(b)
# b 与 a 不共享任何内容
print('我们能够写入 b 来写入 a 吗?')
print(b is a)
print('修改 b 的内容:')
b[0, 0] = 100
print('修改后的数组 b:')
print(b)
print('a 保持不变:')
print(a)

执行结果:

数组 a:
[[10 10]
[ 2 3]
[ 4 5]]
创建 a 的深层副本:
数组 b:
[[10 10]
[ 2 3]
[ 4 5]]
我们能够写入 b 来写入 a 吗?
False
修改 b 的内容:
修改后的数组 b:
[[100 10]
[ 2 3]
[ 4 5]]
a 保持不变:
[[10 10]
[ 2 3]
[ 4 5]]

拓展:Python 中 list 的拷贝与 numpy 的 array 的拷贝

1.python中列表list的拷贝,会有什么需要注意的呢?

Python 变量名相当于标签名。

list2=list1 直接赋值,实质上指向的是同一个内存值。任意一个变量 list1(或list2)发生改变,都会影响另一个 list2(或list1)。

list1 = [i for i in range(4)]
list2 = list1
print('原列表为:\n', list1)
print('修改list2:')
list2[0] = 100
print('list1={}\nlist2={}'.format(list1, list2))

执行结果:

原列表为:
[0, 1, 2, 3]
修改list2:
list1=[100, 1, 2, 3]
list2=[100, 1, 2, 3]

17、NumPy——副本和视图的更多相关文章

  1. NumPy 副本和视图

    NumPy 副本和视图 副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置. 视图是数据的一个别称或引用,通过该别称或引用亦便可访问.操作原有数据,但原有数 ...

  2. NumPy副本和视图

    NumPy - 副本和视图 在执行函数时,其中一些返回输入数组的副本,而另一些返回视图. 当内容物理存储在另一个位置时,称为副本. 另一方面,如果提供了相同内存内容的不同视图,我们将其称为视图. 无复 ...

  3. 吴裕雄--天生自然Numpy库学习笔记:NumPy 副本和视图

    副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置. 视图是数据的一个别称或引用,通过该别称或引用亦便可访问.操作原有数据,但原有数据不会产生拷贝.如果我们 ...

  4. Numpy常用概念-对象的副本和视图、向量化、广播机制

    一.引言 在我们操作数组的时候,返回的是新数组还是原数组的链接,我们就需要了解对象副本和视图的区别. 向量化和广播是numpy内部实现的基础. 二.对象副本和视图 我们应该注意到,在操作数组的时候返回 ...

  5. Django入门与实践-第17章:保护视图(完结)

    http://127.0.0.1:8000/boards/1/ #boards/views.py from django.contrib.auth.decorators import login_re ...

  6. 数据分析 大数据之路 四 numpy 2

    NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...

  7. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  8. 理解numpy中ndarray的内存布局和设计哲学

    目录 ndarray是什么 ndarray的设计哲学 ndarray的内存布局 为什么可以这样设计 小结 参考 博客:博客园 | CSDN | blog 本文的主要目的在于理解numpy.ndarra ...

  9. NumPy 排序、查找、计数

    章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...

随机推荐

  1. Sublime-emmet插件的使用

    emmet是使用Sublime编写html代码时最好用的一个插件,下面简单介绍一下emmet插件的安装和使用 安装 第一步:打开sublime,首先输入command + shift + p,然后输入 ...

  2. ln创建软链接方式

    ln -s 目标文件 软链接

  3. Python之列表、元组、字典、集合及字符串的详细使用

    1.列表 列表相当与C++中的数组,是有序的项目, 通过索引进行查找,但使用起来却方便很多,具体的操作看代码,自己实践一次就非常简单了. 注:列表一般用中括号“[ ]” #列表(数组) name_li ...

  4. 基于cdn方式的vue+element-ui的单页面架构

    一.下载vue2.x,下载element-ui.js以及css 二.html文件 <!DOCTYPE html> <html> <head> <meta ch ...

  5. Window Server 2008 R2 FTP服务用户隔离

    Window Server 2008 R2 FTP服务用户隔离 原题:安装FTP服务,新建一个FTP站点,主目录为C:\ftproot,通过适当技术实现用户soft1 与soft2通过匿名方式登录FT ...

  6. Flutter-stack層疊樣式

    alignment調整佈局 var stack = new Stack( alignment: Alignment.center,//元素居中 //alignment: Alignment (1,1) ...

  7. JUC并发工具类

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11449367.html java.util.concurrent及其子包,集中了Java并发的各种基础 ...

  8. spring boot 开静态资源访问,配置视图解析器

    配置视图解析器spring.mvc.view.prefix=/pages/spring.mvc.view.suffiix= spring boot 开静态资源访问application.proerti ...

  9. 项目部署到tomcat,浏览器能够访问,手机不能访问。

    问题:有这样一个问题,把项目部署到tomcat上,浏览器能够访问,但是手机不能访问. 解决:在 tomcat中找到conf文件夹,然后找到web.xml

  10. 二叉搜索树第k个节点

    /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x ...