LeNet-5模型的keras实现
import keras
from keras.models import Sequential
from keras.layers import Input,Dense,Activation,Conv2D,MaxPooling2D,Flatten
from keras.datasets import mnist (x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1) #######
x_train = x_train.astype("float32")
print(x_train.shape)
y_train = y_train.astype("float32")
x_test = x_test.reshape(-1,28,28,1)
x_test = x_test.astype("float32")
y_test = y_test.astype("float32") print(y_train)
x_train /= 255
x_test /= 255 from keras.utils import np_utils
y_train_new = np_utils.to_categorical(num_classes=10,y=y_train)
print(y_train_new)
y_test_new = np_utils.to_categorical(num_classes=10,y=y_test) def LeNet_5():
model = Sequential()
model.add(Conv2D(filters=6,kernel_size=(5,5),padding="valid",activation="tanh",input_shape=[28, 28, 1]))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=16,kernel_size=(5,5),padding="valid",activation="tanh"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(120,activation="tanh"))
model.add(Dense(84,activation="tanh"))
model.add(Dense(10,activation="softmax"))
return model def train_model():
model = LeNet_5()
model.compile(optimizer="adam",loss="categorical_crossentropy",metrics=["accuracy"])
model.fit(x_train,y_train_new,batch_size=64,epochs=1,verbose=1,validation_split=0.2,shuffle=True)
return model model = train_model() loss,accuracy = model.evaluate(x_test,y_test_new)
print(loss,accuracy)
LeNet-5模型的keras实现的更多相关文章
- keras系列︱Sequential与Model模型、keras基本结构功能(一)
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...
- Keras(一)Sequential与Model模型、Keras基本结构功能
keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把mod ...
- 模型转换[yolov3模型在keras与darknet之间转换]
首先借助qqwweee/keras-yolo3中的convert.py和tensorrt例子yolov3_onnx,并重新编写了代码,实现将darknet格式的yolov3的yolov3.cfg和yo ...
- caffe_手写数字识别Lenet模型理解
这两天看了Lenet的模型理解,很简单的手写数字CNN网络,90年代美国用它来识别钞票,准确率还是很高的,所以它也是一个很经典的模型.而且学习这个模型也有助于我们理解更大的网络比如Imagenet等等 ...
- Keras官方中文文档:函数式模型API
\ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...
- (六) Keras 模型保存和RNN简单应用
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 RNN用于图 ...
- keras入门(三)搭建CNN模型破解网站验证码
项目介绍 在文章CNN大战验证码中,我们利用TensorFlow搭建了简单的CNN模型来破解某个网站的验证码.验证码如下: 在本文中,我们将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的 ...
- Keras入门(二)模型的保存、读取及加载
本文将会介绍如何利用Keras来实现模型的保存.读取以及加载. 本文使用的模型为解决IRIS数据集的多分类问题而设计的深度神经网络(DNN)模型,模型的结构示意图如下: 具体的模型参数可以参考文章 ...
- Python机器学习笔记:深入理解Keras中序贯模型和函数模型
先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: skl ...
随机推荐
- java 深入HashTable
在java中与有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,value)方法保存起来,然后通过get(key)方法获取相 ...
- leetcode 63 不同路径II
二维数组动态规划,还可以采用一维数组进行动态规划. class Solution { public: int uniquePathsWithObstacles(vector<vector< ...
- leetcode 714. 买卖股票的最佳时机含手续费
继承leetcode123以及leetcode309的思路,,但应该也可以写成leetcode 152. 乘积最大子序列的形式 class Solution { public: int maxProf ...
- nodejs之express路由与动态路由
1.快速创建express项目步骤 /** * 1.cd 到项目里面 * 2.npm init --yes 创建package.json文件 * 3.安装express * npm install e ...
- shell脚本判断端口是否打开
[root@www zabbix_scripts]# cat check_httpd.sh #!/bin/bash a=`lsof -i: | wc -l` " ];then " ...
- java:struts框架5(Converter,Validation,Tags(Object-Graph Navigation Language))
1.Converter: struts.xml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTY ...
- jmeter对websocket进行压测
参考文档:https://blog.csdn.net/weixin_39430584/article/details/81508451 ①脚本调通 ②添加并发量和持续时间 ③看服务器指标
- python 并发编程 多线程 GIL与多线程
GIL与多线程 有了GIL的存在,同一时刻同一进程中只有一个线程被执行 多进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势 1.cpu到底是用来做计算的,还是用来做I/ ...
- ansible-playbook 案例
nginx的安装 编写nginx的自动部署文件nginx.yml hosts主机更改为自己定义的 访问目标主机组的IP地址,查看测试页面 测试页面:显示的是本机ip 1 <h1> ...
- Log的相关用法
1.最好用静态final定义Log变量 private static final Log log = LogFactory.getLog(MyTest.class); 这样做的好处有三: 可以保证线程 ...