1、分配更多的资源

  1.1 分配的资源有:executor、cup per executor、memory per executor、driver memory

  1.2 如何分配:在spark-submit提交时设置相应的参数  

/usr/local/spark/bin/spark-submit \
--class cn.spark.sparktest.core.WordCountCluster \
--num-executors \ 配置executor的数量
--driver-memory 100m \ 配置driver的内存(影响不大)
--executor-memory 100m \ 配置每个executor的内存大小
--executor-cores \ 配置每个executor的cpu core数量
/usr/local/SparkTest-0.0.-SNAPSHOT-jar-with-dependencies.jar \

  1.3 调节到多大(原则:能使用的资源有多大,就尽量调节到最大的大小)

    第一种,spark standalone,公司集群上,搭建了一套spark集群,应该清楚每台机器还能够给你使用的,还有多少内存和多少个cpu,然后根据此来进行配置;

      比如:有20台机器,每台有2个cpu和4G的内存,那么如果配置20个executor,那个每个executor内存分配4G和2个cpu

    第二种,yarn,应该去查看spark作业提交到的资源队列大概有多少资源;

      比如:如果有500G内存和100个cpu core,那么如果分配50个executor,那么每个executor分配的cpu core为2个

2、调节并行度

  2.1 并行度:其实是指,spark作业中,各个stage的task数量,也就代表了spark作业在各个stage的并行度

  2.2 配置方法:

spark.default.parallelism
SparkConf conf = new SparkConf().set("spark.default.parallelism", "")

  2.3 调节原则:应该配置到足够大,大到可以完全利用你的集群资源

    2.3.1 task数量:至少设置成与spark application的总cpu数量相同

      比如:总共150个cpu core,配置150个task,一起运行,差不多同一时间运行完毕

    2.3.2 官方推荐 task数据设置为spark application的总cpu数量的2~3倍

      比如:总共150个cupcore,配置300~500个task

3、将rdd进行持久化

  3.1 持久化的原则

    3.1.1 Rdd的架构重构和优化

      尽量复用Rdd,差不多的Rdd进行抽象为一个公共的Rdd,供后面使用

    3.1.2 公共Rdd一定要进行持久化

      对应对次计算和使用的Rdd,一定要进行持久化

    3.1.3 持久化是可以序列化的

      首先采用纯内存的持久化方式,如果出现OOM异常,则采用纯内存+序列化的方法,如果依然存在OOM异常,使用内存+磁盘,以及内存+磁盘+序列化的方法

    3.1.4 为了数据的高可靠性,而且内存充足时,可以使用双副本机制进行持久化

  3.2 持久化的代码实现

    .persist(StorageLevel.MEMORY_ONLY())

  3.3 持久化等级

    StorageLevel.MEMORY_ONLY()    纯内存    等效于   .cache()

    序列化的:后缀带有_SER 如:StorageLevel.MEMORY_ONLY_SER()   内存+序列化

        后缀带有_DISK 表示磁盘,如:MEMORY_AND_DISK() 内存+磁盘

        后缀带有_2表示副本数,如:MEMORY_AND_DISK_2() 内存+磁盘且副本数为2

4、将每个task中都使用的大的外部变量作为广播变量

  4.1 没有使用广播变量的缺点

    默认情况,task使用到了外部变量,每个task都会获取一份外部变量的副本,会占用不必要的内存消耗,导致在Rdd持久化时不能写入到内存,只能持久化到磁盘中,增加了IO读写操作。

    同时,在task创建对象时,内存不足,进行频繁的GC操作,降低效率

  4.2 使用广播变量的好处

    广播变量不是每个task保存一份,而是每个executor保存一份。

    广播变量初始化时,在Driver上生成一份副本,task运行时需要用到广播变量中的数据,首次使用会在本地的Executor对应的BlockManager中尝试获取变量副本;如果本地没有,那么就会从Driver远程拉取变量副本,并保存到本地的BlockManager中;此后这个Executor中的task使用到的数据都从本地的BlockManager中直接获取。

    Executor中的BlockManager除了从远程的Driver中拉取变量副本,也可能从其他节点的BlockManager中拉取数据,距离越近越好。

5、使用KryoSerializer进行序列化

  5.1 使用KryoSerializer序列化的好处

    默认情况,spark使用的是java的序列化机制,ObjectOutputStream / ObjectInputStream,对象输入输出流机制,来进行序列化。

    该序列化的好处是方便使用,但必须实现Serializable接口,缺点是效率低,速度慢,序列化后的占用空间大

    KryoSerializer序列化机制,效率高,速度快,占用空间小(只有java序列化的1/10),可以减少网络传输

  5.2 使用方法

      //配置使用KryoSerializer进行序列化
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
//(为了使序列化效果达到最优)注册自定义的类型使用KryoSerializer序列化
.registerKryoClasses(new Class[]{ExtractSession.class,FilterCount.class,SessionDetail.class,Task.class,Top10Session.class,Top10.class,VisitAggr.class});

  5.3 使用KryoSerializer序列化的场景

    5.3.1 算子函数中使用到的外部变量,使用KryoSerializer后,可以优化网络传输效率,优化集群中内存的占用和消耗

    5.3.2 持久化Rdd,优化内存占用,task过程中创建对象,减少GC次数

    5.3.3 shuffle过程,优化网络的传输性能

6、使用fastutil代替java标准的集合框架

  6.1 fastutil是什么

    fastutil扩展了java标准的集合框架,占用内存更小,存取速度更快,还提供了双向迭代器,并对引用类型使用等号(=)进行比较

  6.2 使用方法

    6.2.1 在pom.xml文件中引入相应的jar包

<dependency>
<groupId>fastutil</groupId>
<artifactId>fastutil</artifactId>
<version>5.0.</version>
</dependency>

    6.2.2 在java代码中使用fastutil相应的集合框架

//使用fastutil代替java util
final Map<String, IntList> extractSessionIndexs=new HashMap<String, IntList>();
//final Map<String, List<Integer>> extractSessionIndexs=new HashMap<String, List<Integer>>(); //使用fastutil代替java util
IntList extractIndexSet= new IntArrayList();
//extractIndexSet= new ArrayList<Integer>();

  6.3 适用场景

    6.3.1 fastutil尽量提供了在任何情况下都是速度最快的集合框架

    6.3.2 如果算子函数中使用到了外部变量,第一,可以使用广播变量进行优化;第二、可以使用KryoSerializer序列化进行优化;第三可以使用fastutil代替java 标准的集合框架进行优化

    6.3.3 算子函数中如果出现较大的集合,可以考虑使用fastutil进行重构

7、调节数据本地化等待时长

  7.1 什么事数据本地化等待时长

    每个task在哪个节点上执行是根据spark的task分配算法进行预先计算好的,但是可能由于该节点的资源或者计算能力满了,该task无法分配到该节点上,默认会等待3s,如果还是不能分配到该节点上,就会选择比较差的本地化级别,比如说,将task分配到原节点比较近的节点进行计算。

  7.2 数据本地化级别

    PROCESS_LOCAL:(默认),进程本地化,在同一个节点中执行,数据在执行task的executor中的BlockManager中,性能最优

    NODE_LOCAL:节点本地化,数据和task在同一节点的不同executor中,数据需要进行进程间的传输

    NO_PRE:对于task来说,数据从哪里获取都一样,没有好坏之分

    RACK_LOCAL:机架本地化,数据和task在一个机架的不同节点上,数据需要进行网络传输

    ANY:数据和task可能在集群中的任何地方,而且不在一个机架上,性能最差

  7.3 如何调节

    通过查看日志,日志里会显示,starting task ....,PROCESS_LOCAL、NODE_LOCAL、等信息  

//设置数据本地化等待时间(单位为s)
conf.set("spark.locality.wait", "");

spark性能调优01-常规调优的更多相关文章

  1. Spark性能优化:数据倾斜调优

    前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化 ...

  2. 【转】Spark性能优化指南——基础篇

    http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a ...

  3. spark性能调优:资源优化

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

  4. Spark性能调优之代码方面的优化

    Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(ca ...

  5. (转)Spark性能优化:资源调优篇

      在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何 ...

  6. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  7. [Spark性能调优] 第二章:彻底解密Spark的HashShuffle

    本課主題 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 ...

  8. Spark性能调优之合理设置并行度

    Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么?     spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度!     当分配 ...

  9. Spark性能调优之资源分配

    Spark性能调优之资源分配    性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了 ...

  10. Spark性能调优之Shuffle调优

    Spark性能调优之Shuffle调优    • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...

随机推荐

  1. 转 : jconsole 和jvisualVM 监控远程 spring boot程序

    监控java 程序 增加启动参数 java  \ -Djava.rmi.server.hostname=192.168.2.39 \ -Dcom.sun.management.jmxremote \- ...

  2. Excel_PowerQuery——秒杀Vlookup的表合并

    终于,Power Query的第二弹来了,距离上一次PQ更博,已经将近半年. Excel_PoweQuery——条件计数.条件求和 使用PQ进行表格数据的连接合并是一件畅快的事情. 下面的数据是我随机 ...

  3. Python之执行精确的浮点数运算

    有时候:代码上数字计算可能会有如同下面的误差 原因: 这些错误是由底层CPU和IEEE 754标准通过自己的浮点单位去执行算术时的特征. 由于Python的浮点数据类型使用底层表示存储数据,因此你没办 ...

  4. saltstack基本操作第一篇章

    一.安装saltstack 1)官网安装 http://repo.saltstack.com/#rhel saltstack的模块:   https://www.unixhot.com/docs/sa ...

  5. k8s的存储卷

    存储卷查看:kubectl explain pods.spec.volumes 一.简单的存储方式 1)2个容器之间共享存储..(删除则数据消失) apiVersion: v1 kind: Pod m ...

  6. β版本apk下载地址及源代码github地址

    β版本下载地址   源代码下载地址:https://github.com/U-Help/Version-1.0 安装包下载地址:百度网盘:(密码q3sy)https://pan.baidu.com/s ...

  7. 【C/C++】知识点系统复习 (第一周)

    2018/12/18 周二 1. C++内存布局分为几个区域,每个区域有什么特点? 主要可以分为 5 个区域, (1) 栈区:由编译器自动分配释放,存放函数的参数值,局部变量的值等.其操作方式类似于数 ...

  8. Netflix:我们为什么要将GraphQL引入前端架构?

    作者|Artem Shtatnov译者|无明 在这篇文章中,我们将分享 Netflix 在这些应用程序的前端架构中引入 GraphQL 所积累的经验. 在内部,我们把用于管理广告创建和组装的主要应用程 ...

  9. jQuery遍历之同级遍历

    html <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <ti ...

  10. Docker部署Flask应用

    创建应用 首先,编写一个简单的Flask应用:docker_test/flask_app.py Docker 安装 请根据自己的操作系统自行安装. Docker简介 Docker 镜像 Docker镜 ...