2019 杭电多校 1 1013

题目链接:HDU 6590

比赛链接:2019 Multi-University Training Contest 1

Problem Description

After returning with honour from ICPC(International Cat Programming Contest) World Finals, Tom decides to say goodbye to ICPC and start a new period of life. He quickly gets interested in AI.

In the subject of Machine Learning, there is a classical classification model called perceptron, defined as follows:

Assuming we get a set of training samples: \(D={(\boldsymbol{x_1},y_1),(\boldsymbol{x_2},y_2),...,(\boldsymbol{x_N},y_N)}\), with their inputs \(\boldsymbol{x}\in \mathbb{R}^d\), and outputs \(y\in \{−1,1\}\). We will try to find a function \(f(\boldsymbol{x})=sign(\sum_{i=1}^d w_i\cdot x_i+b)=sign(\boldsymbol{w^T} \cdot \boldsymbol{x}+b)\) so that \(f(\boldsymbol{x_i})=y_i,i=1,2,...,N\).

\(\boldsymbol{w}, \boldsymbol{x}\) mentioned above are all d-dimensional vectors, i.e. \(\boldsymbol{w}=(w_1,w_2,...,w_d), \boldsymbol{x}=(x_1,x_2,...,x_d)\). To simplify the question, let \(w_0=b\), \(x_0=1\), then \(f(\boldsymbol{x})=sign(\sum_{i = 0}^d w_i\cdot x_i)=sign(\boldsymbol{w^T}\cdot \boldsymbol{x})\). Therefore, finding a satisfying function \(f(\boldsymbol{x})\) is equivalent to finding a proper \(\boldsymbol{w}\).

To solve the problem, we have a algorithm, PLA(Popcorn Label Algorithm).

Accoding to PLA, we will randomly generate \(\boldsymbol{w}\).

If \(f(\boldsymbol{x})=sign(\boldsymbol{w^T}\cdot \boldsymbol{x})\) fails to give any element \((\boldsymbol{x_i},y_i)\in D\) the right classification, i.e. \(f(\boldsymbol{x_i})\neq y_i\), then we will replace \(w\) with another random vector. We will do this repeatedly until all the samples \(\in D\) are correctly classified.

As a former-JBer, Tom excels in programming and quickly wrote the pseudocode of PLA.

  w := a random vector
while true do
flag:=true
for i:=1 to N do
if f(x[ i ]) != y[ i ] then
flag:=false
break
if flag then
break
else
w := a random vector
return w

But Tom found that, in some occasions, PLA will end up into an infinite loop, which confuses him a lot. You are required to help Tom determine, when performed on a given sample set \(D\), if PLA will end up into an infinite loop. Print Infinite loop! if so, or Successful! otherwise.

We only consider cases when \(d=2\) for simplification.

Note:

\[sign(x)= \begin{cases} -1& x < 0 \\ 0& x = 0 \\ 1& x > 0 \end{cases}
\]

Input

The first line contains an integer \(T(1\le T\le 1000)\), the number of test cases.

Each test case begins with a line containing a single integer \(n(1\le n\le 100)\), size of the set of training samples \(D\).

Then \(n\) lines follow, the ith of which contains three integers \(x_{i,1},x_{i,2},y_i (−10^5\le x_{i,1},x_{i,2}\le 10^5, y_i\in {−1,1})\), indicating the ith sample \((x_i,y_i)\) in \(D\), where \(x_i=(x_{i,1},x_{i,2})\).

Output

For each test case, output a single line containing the answer: “Infinite loop!” or “Successful!”.

Sample Input

3
2
1 1 1
2 0 -1
4
0 0 1
2 0 -1
1 1 1
1 -1 -1
6
0 0 1
2 0 -1
1 1 1
1 -1 -1
1 0 1
0 1 -1

Sample Output

Successful!
Successful!
Infinite loop!

Solution

题意

给出两类点的坐标,问能否用一条直线将两类点分开。

题解

题目看懂了就很好做了。

就是分别对两类点求凸包,然后判断两个凸包是否相交。若不相交,则能够用一条直线分开两类点,否则不能。

其实就是判断凸包是否相交的模板题。

类似的题目有:

Code

#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
double length() {
return sqrt(x * x + y * y);
}
}; typedef Point Vector; double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) < -eps)
return true;
return false;
} double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
} typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
} int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
} // 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
} // 判断线段相交
bool Intersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1),
c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} // 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
} void solve(Polygon s1, Polygon s2) {
int c1 = s1.size(), c2 = s2.size();
for(int i = 0; i < c1; ++i) {
if(isPointInPolygon(s1[i], s2)) {
printf("Infinite loop!\n");
return;
}
}
for(int i = 0; i < c2; ++i) {
if(isPointInPolygon(s2[i], s1)) {
printf("Infinite loop!\n");
return;
}
}
for (int i = 0; i < c1; i++) {
for (int j = 0; j < c2; j++) {
if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) {
printf("Infinite loop!\n");
return;
}
}
}
printf("Successful!\n");
} int main() {
int T;
cin >> T;
while (T--) {
int n;
scanf("%d", &n);
Polygon s1, s2;
for (int i = 0; i < n; ++i) {
double x1, x2, y;
scanf("%lf%lf%lf", &x1, &x2, &y);
if(y == 1) {
s1.push_back(Point(x1, x2));
} else {
s2.push_back(Point(x1, x2));
}
}
if(n == 1) {
printf("Successful!\n");
continue;
}
if(s1.size()) s1 = Andrew(s1);
if(s2.size()) s2 = Andrew(s2);
solve(s1, s2);
}
return 0;
}

HDU 6590 Code (判断凸包相交)的更多相关文章

  1. POJ 3805 Separate Points (判断凸包相交)

    题目链接:POJ 3805 Problem Description Numbers of black and white points are placed on a plane. Let's ima ...

  2. hdu 1086(判断线段相交)

    传送门:You can Solve a Geometry Problem too 题意:给n条线段,判断相交的点数. 分析:判断线段相交模板题,快速排斥实验原理就是每条线段代表的向量和该线段的一个端点 ...

  3. UVa 10256 - The Great Divide 判断凸包相交

    模板敲错了于是WA了好几遍…… 判断由红点和蓝点分别组成的两个凸包是否相离,是输出Yes,否输出No. 训练指南上的分析: 1.任取红凸包上的一条线段和蓝凸包上的一条线段,判断二者是否相交.如果相交( ...

  4. [2019HDU多校第一场][HDU 6590][M. Code]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6590 题目大意(来自队友):二维平面上有\(n\)个点,每个点要么是黑色要么是白色,问能否找到一条直线 ...

  5. UVALive7461 - Separating Pebbles 判断两个凸包相交

    //UVALive7461 - Separating Pebbles 判断两个凸包相交 #include <bits/stdc++.h> using namespace std; #def ...

  6. poj1584(判断凸包+求点到线段的距离)

    题目链接:https://vjudge.net/problem/POJ-1584 题意:首先要判断凸包,然后判断圆是否在多边形中. 思路: 判断凸包利用叉积,判断圆在多边形首先要判断圆心是否在多边形中 ...

  7. Codeforces 166B - Polygon (判断凸包位置关系)

    Codeforces Round #113 (Div. 2) 题目链接:Polygons You've got another geometrical task. You are given two ...

  8. 还记得高中的向量吗?leetcode 335. Self Crossing(判断线段相交)

    传统解法 题目来自 leetcode 335. Self Crossing. 题意非常简单,有一个点,一开始位于 (0, 0) 位置,然后有规律地往上,左,下,右方向移动一定的距离,判断是否会相交(s ...

  9. 【POJ 2653】Pick-up sticks 判断线段相交

    一定要注意位运算的优先级!!!我被这个卡了好久 判断线段相交模板题. 叉积,点积,规范相交,非规范相交的简单模板 用了“链表”优化之后还是$O(n^2)$的暴力,可是为什么能过$10^5$的数据? # ...

随机推荐

  1. C++ Compiling… Error spawning cl.exe

    转自VC错误:http://www.vcerror.com/?p=500 解决方法: 方法(一): 启动VC时不要用图形界面,通过在命令提示符下输入:Msdev /useenv运行(注意啦/前面有个空 ...

  2. MySQL replace 和 replace into 的用法

    mysql replace实例说明: UPDATE tb1 SET f1=REPLACE(f1, 'abc', 'def'); REPLACE(str,from_str,to_str) 在字符串 st ...

  3. 多条件异步搜索+分页(PHP、 AJAX、ThinkPHP)

    项目中遇到的多条件异步查询及数据分页问题,做了数次尝试,最终虽目的达到,略有繁琐,希望能有更好的处理方式 基于 tp框架 1.html页面代码 <div class="h_cityNa ...

  4. 基于MFC的Media Player播放器的制作介绍

    |   版权声明:本文为博主原创文章,未经博主允许不得转载. 因为这次多媒体课程设计做一个基于MFC的播放器,因为本人实力太菜,需要播放音乐或视频文件时候,自己写不出解码 函数,所以准备使用第三方多媒 ...

  5. echarts 视图自适应问题

    最近在项目中用到了echarts,在处理视图自适应问题上记录一下:同时比较一下和highcharts的区别: 在echarts中有一个resize的函数,可以直接在监听窗口变化时重新渲染即可: //在 ...

  6. spring boot MVC

    1 spring boot的用途 第一,spring boot可以用来开发mvc web应用. 第二,spring boot可以用来开发rest api. 第三,spring boot也可以用来开发w ...

  7. mybatis中的命名空间(namespace)的作用

    mybatis中为每一个映射文件添加一个namespace,这样不同的映射文件中sql语句的id相同也不会有冲突,只要定义在映射文件中的sql语句在该映射文件中id唯一就可以

  8. Python第九节 条件和循环

    while...else 当满足while循环条件的时候执行循环体内的语句,否则执行else的语句例如下面的例子: count = 1 while count <= 5: print(" ...

  9. Javascript高级程序设计--读书笔记之Array类型

    1.数组的lenght属性 数组的lenght属性很有特点---他不是只读的,可以同过修改这个属性来向数组的末尾添值加或删除值, 删除值 var color = ["red", & ...

  10. MyBatis操作数据库(基本增删改查)

    一.准备所需工具(jar包和数据库驱动) 网上搜索下载就可以 二.新建一个Java project 1.将下载好的包导入项目中,build path 2.编写MyBatis配置文件:主要填写prope ...