第一次写博客,以此纪念这几天安装caffe,跑faster-rcnn的血泪史.在此特别感谢网络各路大神,来自全球各地,让我能从中汲取营养,吸取经验,总结规律.

faster-rcnn分为matlab版本和python版本,首先记录弄python版本的环境搭建过程.matlab版本见另一篇:faster-rcnn(testing): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3+opencv3.0+matlabR2014a环境搭建记录

首先,进入官方github网站:https://github.com/rbgirshick/py-faster-rcnn.按照作者的步骤,一步步往下走.

1.按Ctrl+Alt+t进入终端,进入你想存放源代码的路径后(在此假设为dir:A),输入:

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

--recursive大概是递归克隆的意思,就是把源码中的文件夹,文件夹下的子文件夹等等全部克隆过来.最后在当前目录下得到一个叫py-faster-rcnn的文件夹,即A/py-faster-rcnn.

2.作者接下来的意思是进入lib,输入make来"Build the Cython modules".但是我当时没看到这一步,直接进的下一步,事实证明,后面再做这一步也可以.请继续往下看.

进入caffe-fast-rcnn,这时,需要编译作者自己写的caffe.而这就要求电脑的环境配置了.

条件:

  2.1 python2.7及各种需要的库,如numpy等,这些库如果不装夜可以按照编译报错时的提示一一安装.

  2.2 cuda7.5和cudnn5.1.3.cuda是电脑早就装好的,cudnn我是按最新的装,反正没错.这里有篇不错的教程:http://blog.csdn.net/ubunfans/article/details/47724341.写得非常好.

  需要注意的是跑matlab版本时gcc降级为4.7,而此时的python版本为4.9.gcc的版本按照该网站修改,归根结底是修改系统gcc和g++文件的链接路径:http://www.cnblogs.com/loveidea/p/4384837.html

  2.3 opencv3是在跑matlab版本的时候装的,不知道python版本是不是也要求,装的过程也有一些注意事项,具体请看matlab部分.

3.我们已在A/python-faster-rcnn/caffe-fast-rcnn下,发现没有Makefile.config文件,这时就要把当时电脑编译caffe时的config文件拷过来了,按照自己的情况进行修改.我的config文件重点部分如下:

USE_CUDNN := 1
OPENCV_VERSION := 3
CUDA_DIR := /usr/local/cuda ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
PYTHON_LIB := $(ANACONDA_HOME)/lib
WITH_PYTHON_LAYER := 1
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

4.好了,开始输入:

make clean #这个是把以前的遇到错误的make记录清除了,第一次make的时候不需要输,问题是之后我遇到了很多错误.
make -j8 #这是出问题最多的地方
make pycaffe

当上面的命令非常成功地不出现错误的时候,congratulations,你离成功已经很近了.假设你已经走到了这一步(问题在下面讨论),接下来是:

5.作者的步骤如下,不过我是输入该.sh下的网址:http://www.cs.berkeley.edu/%7Erbg/faster-rcnn-data/faster_rcnn_models.tgz直接下载的,linux的火狐浏览器貌似打不开此网址,我是在另外一台windows的浏览器上下载的.下载完之后解压放入A/python-faster-rcnn/data.

cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

6.这时,该进入lib,输入make来"Build the Cython modules".如果到这了还不执行这一步后面会发生一些奇怪的事情.特此告知.

cd python-faster-rcnn/lb
make

7.

cd python-faster-rcnn
./tools/demo.py

大功告成:

问题汇总:以下列举出整个过程我遇到的一些问题,因为当时没总结,有些可能忘了.非严格按照时间顺序.

1.

/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
pad_h, pad_w, stride_h, stride_w));

这是由于cudnn和caffe版本不兼容造成的,具体有两种解决思路.第一种是降低cudnn版本,比如我降到了cudnnv3.0,结果出现了另外一些低版本的问题,报错说某些层未定义.另一种思路是提高caffe的版本,因为作者github上的caffe未能"及时升级".具体请参照这一篇神奇的博客:http://blog.csdn.net/rzjmpb/article/details/52373012

大意如下:

cd py-faster-rcnn/caffe-fast-rcnn
git remote add caffe https://github.com/BVLC/caffe.git
git fetch caffe
git merge caffe/master
在合并之后注释掉include/caffe/layers/python_layer.hppa文件里的self_.attr(“phase”) = static_cast(this->phase_)

至于为什么注释,我也搞不明白,也不知道该大神是怎么弄明白的,更不知道如果不注释会不会影响到后面.

2.

libgfortran.so.3: version `GFORTRAN_1.4' not found 

参照:http://stackoverflow.com/questions/9628273/libgfortran-version-gfortran-1-4-not-found

3.

 from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \

ImportError: numpy.core.multiarray failed to import 

这是一个非常牛逼的错误,因为它涉及到ubuntu14.04的numpy最新版本问题.

这个问题是因为numpy版本太低,ubuntu14.04的numpy在numpy网最高版本是1.8.2,系统版本也是1.8.2.而这里我们需要更高的版本,如1.10

查看numpy版本的命令是:

python -c "import numpy; print numpy.__version__"

用apt-get install numpy或者pip install --upgrade numpy等发现是不能自动为系统升级numpy的,具体原因不详.所以最后,我选择手动升级.

进入该网站下载numpy-1.10.0.tar.gz: https://sourceforge.net/projects/numpy/files/NumPy/1.10.0/

下载完之后,解压到dir:B,输入以下命令:

cd B
sudo mkdir path
python setup.py build -j8 install --prefix B/path

这样,会在path下生成两个文件夹lib和bin.

把bin下生成的f2py去替换掉/usr/bin下的f2py;把lib/python2.7/site-packages下的所有文件去替换掉/usr/lib/python2.7/dist-packages/下的原来的文件.即可完成升级.

4 还有其他一些问题,不在此一一列举,都是通过疯狂百度或谷歌出来的,基本上都描述的很详细.

py-faster-rcnn(running the demo): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3+python2.7环境搭建记录的更多相关文章

  1. faster-rcnn(testing): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3+opencv3.0+matlabR2014a环境搭建记录

    python版本的faster-rcnn见我的另一篇博客: py-faster-rcnn(running the demo): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3 ...

  2. Ubuntu14.04+caffe+cuda7.5 环境搭建以及MNIST数据集的训练与测试

    Ubuntu14.04+caffe+cuda 环境搭建以及MNIST数据集的训练与测试 一.ubuntu14.04的安装: ubuntu的安装是一件十分简单的事情,这里给出一个参考教程: http:/ ...

  3. py faster rcnn+ 1080Ti+cudnn5.0

    看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后 ...

  4. Ubuntu14.04配置gcc4.4.4+Qt4.8.4交叉编译环境

    安装32位程序运行支持 sudo apt-get install lib32stdc++6 lib32z1 lib32ncurses5 lib32bz2-1.0 可能报错: lib32stdc++6 ...

  5. ubuntu14.04 caffe

    1.显卡驱动 ubuntu nvidia 940m 使用sudo ubuntu-drivers devices 查看推荐的驱动版本 //sudo add-apt-repository ppa:mama ...

  6. ubuntu14.04+nvidia driver+cuda8+cudnn5+tensorflow0.12

    文章在简书里面编辑的,复制过来貌似不太好看,还是到简书的页面看吧: http://www.jianshu.com/p/c89b97d052b7 1.安装环境简介: 硬件: cpu:i7 6700k g ...

  7. Ubuntu14.04 caffe 配置

    1.前置条件验证 (1) Ubuntu14.04操作系统. (2) 检验计算机是否为NVIDIA显卡,终端输入命令 $ lspci | grep -invidia  (3) 检验计算机是否为x86_6 ...

  8. Ubuntu14.04下CUDA7.5安装与配置

    一.下载: 在官网上下载cuda toolkit(所有需要安装都在里面包括驱动 toolkit Samples)下载网址: https://developer.nvidia.com/cuda-down ...

  9. 在Ubuntu14.04中安装Py3和切换Py2和Py3环境

    前几天小编给大家分享了如何安装Ubuntu14.04系统,感兴趣的小伙伴可以戳这篇文章:手把手教你在VMware虚拟机中安装Ubuntu14.04系统.今天小编给大家分享一下在Ubuntu14.04系 ...

随机推荐

  1. LINUX 下Open cv练习使用小记(2)

    第二节记录一下自己学习图像遍历的一点点代码,摘自<opencv2编程手册>(张静译) 第一个代码是最简单的强行修改像素(添加椒盐噪声) #include <opencv2/core/ ...

  2. Vmware workstation 11 安装 RedHat 9 时 第二个iso文件 出现光盘无法被挂载

    通过虚拟机装linux系统,RedHat 9有3个iso文件,安装第一个iso文件时很顺利,安装完成第一个iso文件后,提示请插入光盘 需要继续安装第二个和第三个iso文件,点击菜单栏——虚拟机——设 ...

  3. Linux系统的压缩技术

    1.常见的压缩文件扩展名 *.Z ---> compress程序压缩的文件. *.gz --->gzip 程序压缩的文件: *.bz2------>bzip2程序压缩的文件: *.t ...

  4. PHP 返回13位时间戳

    13位时间戳生成函数如下所示: private function getMillisecond() { list($t1, $t2) = explode(' ', microtime()); retu ...

  5. CRM 2016 自定义对话框

    项目背景: CRM表单在操作时会有一些提示,或者交互的对话框. 直接 使用js的alert 和  confirm,网格上有些不协调. 以前在项目中使用过jquery 的,但是CRM官方不建议使用jqu ...

  6. [源码]ObjectIOStream 对象流 ByteArrayIOStream 数组流 内存流 ZipOutputStream 压缩流

    1.对象流 import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.File ...

  7. 查看APK方法数的工具dex-method-counts

    做APK方法总能遇到方法数超限的问题(主要是方法数, 字段数, String数.等各种数都可能超过65k导致不能安装) 除了大公司都自己做了一些检查方法. 网上还有一些开源的查询工具. 给大家推荐一个 ...

  8. 第一篇英文短文《It All Starts With A Dream》

    http://www.ximalaya.com/#/17209107/sound/6883165 Dreaming. Do you or don’t you? Do you dream about t ...

  9. 两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz

    1.Java Timer定时 首先继承java.util.TimerTask类实现run方法 import java.util.TimerTask; public class EmailReportT ...

  10. 怎样安装Ubuntu操作系统

    (转载自:http://jingyan.baidu.com/article/ff42efa9423991c19e22020d.html) 准备工作 1. 一台普通电脑(装没装操作系统无所谓),保证电脑 ...