3d数学总结帖,以下是对3d学习过程中数学知识的简单总结

  • 角度值和弧度制的互转
  1. Deg2Rad 角度A1转弧度A2 => A2=A1*PI/180
  2. Rad2Deg 弧度A2转换角度A1 => A1=A2*180/PI
  • u3d中Math.Infinity表示正无穷大,不代表任何具体数值,不能用于具体数值计算中。

    Math.Infinity /Math.Infinity = NaN( Not a Number)
  • u3d中(左手坐标系),绕坐标轴按顺时针旋转角度为正值,按逆时针旋转角度为负值。(待验证)
  • 已知当前点为Target,目标点沿着Target的Y轴旋转45度,沿着自身X轴延伸4米求目标点的3D坐标。
// 1. 已知当前点为Target,目标点沿着Target的Y轴旋转45度,沿着自身X轴延伸4米求目标点的3D坐标
void Test1()
{
Quaternion rot = Quaternion.Euler(0,45,0) * m_target.rotation;
Vector3 destPos = rot * new Vector3(4,0,0);
Debug.DrawLine(m_target.position,destPos,Color.red);
transform.rotation = rot;
transform.position = destPos; Debug.Log("newPos = " + destPos + " targetPos = " + m_target.position
+ " ditance = " + Vector3.Distance(destPos,m_target.position));
}
  • 向量点乘相关dotProduct
  1. 满足交换律
  2. dot(a,b) = |a|*|b|cos(A)
  3. 几何意义:点乘结果越大,两个向量越接近。
  4. 结果dot > 0 表示两个向量夹角在[0,90)之间,方向相同。
  5. 结果dot = 0 表示两个向量夹角为90度,相互垂直正交。
  6. 结果dot < 0 表示两个向量夹角为(90,180]度,方向相反。
  • 向量叉乘crossProduct
  1. 不满足交换律 a x b = - b x a
  2. a x b = |a|*|b|sin(A)
  3. 叉乘得到的向量垂直于原来的两个向量。
  4. 叉乘方向的判断
    //计算两个向量ab的法向量的方向
void Test4()
{
Quaternion r0 = transform.rotation; // r0 * Vector3.forward 计算物体朝向的单位向量
//Quaternion r1 = Quaternion.Euler(0,viewAngle,0) * transform.rotation;
//Quaternion r2 = Quaternion.Euler(0,-viewAngle,0) * transform.rotation; //make it faster
Quaternion r1 = Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y + viewAngle,transform.rotation.eulerAngles.z);
Quaternion r2 = Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y - viewAngle,transform.rotation.eulerAngles.z); Vector3 dest = transform.position + r0 * Vector3.forward * distance;
Vector3 va = transform.position + r1* Vector3.forward * distance;
Vector3 vb = transform.position + r2 * Vector3.forward * distance; Debug.DrawLine(transform.position,va,Color.blue);
Debug.DrawLine(transform.position,vb,Color.red); //在左手坐标系下,在XZ平面上忽略Y轴,判断向量a和向量b的方位(a在b的顺时针方向还是逆时针方向)
//可以通过向量axb的叉乘结果法向量normal的方向来判断。
// 如果normal.y > 0 : b在a的顺时针方向
// 如果normal.y < 0 : b在a的逆时针方向
// 如果normal.y = 0 : b和a方向相同
// 右手坐标系正好相反
//计算法向量
Vector3 normal = Vector3.Cross(va,vb).normalized * 5; // normal.y < 0
//Vector3 normal = Vector3.Cross(vb,va).normalized * 5; // normal.y > 9
Debug.DrawLine(transform.position,transform.position + normal,Color.yellow); }

其中蓝色为向量a,红色为向量b,ab所在平面的法向量y<0



代码链接

3d数学总结帖的更多相关文章

  1. 3D数学的实际应用

    以前自己在学习三维程序开发时并没有在意3D数学在程序中的重要作用,但在实际工作中逐渐发现:自己忽视了3D数学的作用,我们实际开发工作总要求模型准确的变换,而不是强调渲染有多炫,那是游戏,如果是仿真程序 ...

  2. 3D数学 ---- 矩阵和线性变换[转载]

    http://blog.sina.com.cn/s/blog_536e0eaa0100jn7c.html 一般来说,方阵能描述任意线性变换.线性变换保留了直线和平行线,但原点没有移动.线性变换保留直线 ...

  3. Unity3D之空间转换学习笔记(三):3D数学

    3D数学基础 向量 向量可以看做具有方向和大小的一条线段. 比如:我们如果用点A减去点B,则可以得到一个向量,该向量的方向为点B面向点A的方向,而大小为两点的距离.这个方法在游戏开发中经常用到,比如我 ...

  4. 3D数学学习笔记——笛卡尔坐标系

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学 ...

  5. 3D数学读书笔记——矩阵基础

     本系列文章由birdlove1987编写,转载请注明出处.    文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031   矩 ...

  6. Unity3D学习笔记(五):坐标系、向量、3D数学

    Unity复习 using System.Collections; using System.Collections.Generic; using UnityEngine; public class ...

  7. 3D数学读书笔记——四元数

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659 什么是四元数 ...

  8. Unity3D for VR 学习(6): 再次温故知新-3D数学

    一年前,系统学习过3D数学,并记录了一篇博客<C#程序员整理的Unity 3D笔记(十):Unity3D的位移.旋转的3D数学模型>. 一年后,再次温习之. 坐标系:Unity3D使用左手 ...

  9. 3D数学读书笔记——矩阵基础番外篇之线性变换

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...

随机推荐

  1. C#使用GET、POST请求获取结果

    C#使用GET.POST请求获取结果,这里以一个简单的用户登陆为例. 1. 使用GET请求获取结果 1.1 创建LoginHandler.aspx处理页面 protected void Page_Lo ...

  2. chrome浏览器限制的端口

    1,    // tcpmux 7,    // echo 9,    // discard 11,   // systat 13,   // daytime 15,   // netstat 17, ...

  3. linux 环境变量

    电脑中必不可少的就是操作系统.而Linux的发展非常迅速,有赶超微软的趋势.这里介绍Linux的知识,让你学好应用Linux系统.比如要把/etc/apache/bin目录添加到PATH中,方法有三: ...

  4. 杭电ACM1004

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  5. Linux学习笔记(16)shell基础之Bash变量

    1. 用户自定义变量 (1)变量设置规则 ① 变量名称可由字母.数字和下划线组成,但不能以数字开头: ② 变量的默认类型为字符串类型,如果要对数值运算,则必须指定变量类型为数值型: ③ 变量用等号连接 ...

  6. OpenMP的简单使用教程

    转自:http://binglispace.com/2015/01/09/openmp-intro/ OpenMP的简单使用教程 今天有幸参加了一个XSEDE OpenMP的workshop讲座,真是 ...

  7. github jekyll site不再使用Maruku由于Markdown翻译员,但kramdown

    今天写了一篇博客,之push至jekyll site on github在,发现总是错的,例如,下面的电子邮件消息: The page build completed successfully, bu ...

  8. 公司中springcloud项目遇到的问题

    1.更改maven的.m2下的settings.xml文件,程序就可以运行,是不是很神奇?

  9. mysql查询语句and,or

    where查询里,常用到and,or and SELECT field1, field2,...fieldN FROM table_name1, table_name2... WHERE condit ...

  10. Self hosted OWIN 绑定地址127.0.0.1,外网无法访问

    static void Main()         {             string baseAddress = "http://localhost:4004/";   ...