RSA的算法涉及三个参数,n、e、d。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和d是一对相关的值,e可以任意取,但要求e与(p-1)*(q-1)互质;再选择d,要求(d*e1)mod((p-1)*(q-1))=1。
(n,e),(n,d)就是密钥对。其中(n,e)为公钥(n,d)为私钥。[1] 
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^d mod n;B=A^e mod n;(公钥加密体制中,一般用公钥加密,私钥解密)
e和d可以互换使用,即:
A=B^d mod n;B=A^e mod n;
 
#!/usr/bin/env python
#coding -*- utf:8 -*-
import math
import random #生成素数数组
def prime_array():
arraya = []
for i in range(2,100): #生成前100中的素数,从2开始因为2是最小的素数
x = prime(i,2) #i为素数是返回True,则将x加入arraya数组中;2为测试值
if x:
arraya.append(i)
return arraya #判断是否为素数
def prime(n, test_divisor):
if math.sqrt(n) < test_divisor:
return True #为素数时返回True
if n % test_divisor == 0:
return False #不为素数时返回Fasle
else:
return prime(n, test_divisor+1) #找出与(p-1)*(q-1)互质的数e
def co_prime(s):
while True:
e = random.choice(range(100))
x = gcd(e,s)
if x==1: #如果最大公约数为1,则退出循环返回e
break
return e #求两个数的最大公约数
def gcd(a,b):
if b==0:
return a
else:
return gcd(b, a%b) #根据e*d mod s = 1,找出d
def find_d(e,s):
for d in range(100000000): #随机太难找,就按顺序找到d,range里的数字随意
x = (e*d) % s
if x==1:
return d #生成公钥和私钥
def main():
a= prime_array()
print("前100个素数:",a)
p = random.choice(a)
q = random.choice(a)
print("随机生成两个素数p和q. p=",p," q=",q)
n = p * q
s = (p-1)*(q-1)
#print("The p is ", p)
#print("The q is ", q)
#print("The n(p*q) is ",n)
e = co_prime(s)
print("根据e和(p-1)*(q-1))互质得到: e=", e)
d = find_d(e,s)
print("根据(e*d) 模 ((p-1)*(q-1)) 等于 1 得到 d=", d)
print("公钥: n=",n," e=",e)
print("私钥: n=",n," d=",d)
pbvk=(n,e,d)
return pbvk #生成public key公钥或private key私钥
#zx==0 公钥 zx==1 私钥
#a为元组(n,e,d)
def generate_pbk_pvk(a,zx):
pbk = (a[0],a[1]) #public key公钥 元组类型,不能被修改
pvk = (a[0],a[2]) #private key私钥
#print("公钥: n=",pbk[0]," e=",pbk[1])
#print("私钥: n=",pvk[0]," d=",pvk[1])
if zx==0:
return pbk
if zx==1:
return pvk #加密
def encryption(mw, ned):
# 密文B = 明文A的e次方 模 n, ned为公钥
#mw就是明文A,ned【1】是e, ned【0】是n
B = pow(mw,ned[1]) % ned[0]
return B #解密
def decode(mw, ned):
# 明文C = 密文B的d次方 模 n, ned为私钥匙
#mw就是密文B, ned【1】是e,ned【1】是d
C = pow(mw,ned[1]) % ned[0]
return C if __name__=='__main__':
pbvk = main()
pbk = generate_pbk_pvk(pbvk, 0) #公钥 if 0 return pbk if 1 return pvk
A = int(input("请输入明文: "))
print("加密中....")
B = encryption(A,pbk) #加密
print("生成的密文是: ", B)
pvk = generate_pbk_pvk(pbvk, 1) #私钥
print("解密中....")
C = decode(B,pvk) #解密
print("解密后的明文是: ", C)
if A==C:
print("加密前的明文和解密后的明文一样,成功!!!")

RSA加密解密(python版)的更多相关文章

  1. python rsa 加密解密 (编解码,base64编解码)

    最近有需求,需要研究一下RSA加密解密安全:在网上百度了一下例子文章,很少有文章介绍怎么保存.传输.打印加密后的文本信息,都是千篇一律的.直接在一个脚本,加密后的文本信息赋于变量,然后立马调用解密.仔 ...

  2. python下RSA加密解密以及跨平台问题

    Reference:  http://www.cnblogs.com/luchanghong/archive/2012/07/18/2596886.html 项目合作需要,和其他网站通信,消息内容采用 ...

  3. python RSA加密解密及模拟登录cnblog

    1.公开密钥加密 又称非对称加密,需要一对密钥,一个是私人密钥,另一个则是公开密钥.公钥加密的只能私钥解密,用于加密客户上传数据.私钥加密的数据,公钥可以解密,主要用于数字签名.详细介绍可参见维基百科 ...

  4. Cryptopp iOS 使用 RSA加密解密和签名验证签名

    Cryptopp 是一个c++写的功能完善的密码学工具,类似于openssl 官网:https://www.cryptopp.com 以下主要演示Cryptopp 在iOS上的RSA加密解密签名与验证 ...

  5. 使用RSA加密在Python中逆向shell

    i春秋翻译小组-Neo(李皓伟) 使用RSA加密在Python中逆向shell 这是一个关于使用RSA加密编程逆向shell的python教程. 我想提一下,这篇文章更多的是关于理解shell中涉及的 ...

  6. 兼容javascript和C#的RSA加密解密算法,对web提交的数据进行加密传输

    Web应用中往往涉及到敏感的数据,由于HTTP协议以明文的形式与服务器进行交互,因此可以通过截获请求的数据包进行分析来盗取有用的信息.虽然https可以对传输的数据进行加密,但是必须要申请证书(一般都 ...

  7. iOS使用Security.framework进行RSA 加密解密签名和验证签名

    iOS 上 Security.framework为我们提供了安全方面相关的api: Security框架提供的RSA在iOS上使用的一些小结 支持的RSA keySize 大小有:512,768,10 ...

  8. openssl evp RSA 加密解密

    openssl evp RSA 加密解密 可以直接使用RSA.h 提供的接口 如下测试使用EVP提供的RSA接口 1. EVP提供的RSA 加密解密 主要接口: int EVP_PKEY_encryp ...

  9. C# 与JAVA 的RSA 加密解密交互,互通,C#使用BouncyCastle来实现私钥加密,公钥解密的方法

    因为C#的RSA加密解密只有公钥加密,私钥解密,没有私钥加密,公钥解密.在网上查了很久也没有很好的实现.BouncyCastle的文档少之又少.很多人可能会说,C#也是可以的,通过Biginteger ...

  10. C# Java间进行RSA加密解密交互

    原文:C# Java间进行RSA加密解密交互 这里,讲一下RSA算法加解密在C#和Java之间交互的问题,这两天纠结了很久,也看了很多其他人写的文章,颇受裨益,但没能解决我的实际问题,终于,还是被我捣 ...

随机推荐

  1. PHP面向对象之魔术方法复习

    魔术方法复习 2014-9-2 10:08:00 NotePad++ By jiancaigege 飞鸿影~========================= 1.__construct() 构造方法 ...

  2. Markdown入门基础

    // Markdown入门基础 最近准备开始强迫自己写博文,以治疗严重的拖延症,再不治疗就“病入骨髓,司命之所属,无奈何”了啊.正所谓“工欲善其事,必先利其器”,于是乎在写博文前,博主特地研究了下博文 ...

  3. atitit agt sys 设置下级代理功能设计.docx

    atitit agt sys 设置下级代理功能设计.docx 显示界面1 先查询显示 set_sub.js1 设置代理2 /atiplat_cms/src/com/attilax/user/Agent ...

  4. Masonry -- 使用纯代码进行iOS应用的autolayout自适应布局

    简介 简化iOS应用使用纯代码机型自适应布局的工作,使用一种简洁高效的语法替代NSLayoutConstraints. 项目主页: Masonry 最新示例: 点击下载 项目简议: 如果再看到关于纯代 ...

  5. 分享系列--面试JAVA架构师--链家网

    本月7日去了一趟链家网面试,虽然没有面上,但仍有不少收获,在此做个简单的分享,当然了主要是分享给自己,让大家见笑了.因为这次是第一次面试JAVA网站架构师相关的职位,还是有些心虚的,毕竟之前大部分时间 ...

  6. CentOS6.5使用createrepo搭建本地源

    本地搭建本地yum源采用的rpm全部来自CentOS-6.5-bin-DVD1&DVD2; 我的是在虚拟机环境安装,先检查我的操作系统版本: 1 2 3 4 [adam@ultraera ~] ...

  7. 学习WPF——使用Font-Awesome图标字体

    图标字体介绍 在介绍图标字体之前,不得不介绍图标格式ICON ICON是一种图标格式,我们操作系统中各种应用程序都包含一个图标 比如QQ程序的图标是一个可爱的企鹅,我的电脑是一个显示器图标 ----- ...

  8. nyoj 925 国王的烦恼(最小生成树)

    /* 题意:N个城市中每两个城市有多条路径连接,可是因为路径存在的天数是有限的!以为某条路经不存在了 导致N个城市不能连通了,那么村名们就会抗议!问一共会有多少次抗议! 思路:最小生成树....我们用 ...

  9. 修改NLS_DATE_FORMAT的四种方式

    一. 在用户环境变量中指定(LINUX) 在用户的.bash_profile中增加两句: export NLS_LANG=AMERICAN ---这一句必须指定,否则下一句不生效.export NLS ...

  10. 构建自己的PHP框架--抽象Controller的基类

    上一篇博客中,我们将简单的路由解析和执行,从入口文件public/index.php中移入到框架中.入口文件顿时变得清爽无比-- 但是,去我们的controller里看一下,会看到如下的code: p ...