原文: http://blog.csdn.net/czp0322/article/details/52161759

今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义。

DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题。sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际上就是迭代优化算法中的参数。

Caffe的solver类提供了6种优化算法,配置文件中可以通过type关键字设置:

  • Stochastic Gradient Descent (type: “SGD”)
  • AdaDelta (type: “AdaDelta”)
  • Adaptive Gradient (type: “AdaGrad”)
  • Adam (type: “Adam”)
  • Nesterov’s Accelerated Gradient (type: “Nesterov”)
  • RMSprop (type: “RMSProp”)

简单地讲,solver就是一个告诉caffe你需要网络如何被训练的一个配置文件。

Solver.prototxt 流程

  1. 首先设计好需要优化的对象,以及用于学习的训练网络和测试网络的prototxt文件(通常是train.prototxt和test.prototxt文件)
  2. 通过forward和backward迭代进行优化来更新参数
  3. 定期对网络进行评价
  4. 优化过程中显示模型和solver的状态

solver参数

base_lr

这个参数代表的是此网络最开始的学习速率(Beginning Learning rate),一般是个浮点数,根据机器学习中的知识,lr过大会导致不收敛,过小会导致收敛过慢,所以这个参数设置也很重要。

lr_policy

这个参数代表的是learning rate应该遵守什么样的变化规则,这个参数对应的是字符串,选项及说明如下:

  • “step” - 需要设置一个stepsize参数,返回base_lr * gamma ^ ( floor ( iter / stepsize ) ),iter为当前迭代次数
  • “multistep” - 和step相近,但是需要stepvalue参数,step是均匀等间隔变化,而multistep是根据stepvalue的值进行变化
  • “fixed” - 保持base_lr不变
  • “exp” - 返回base_lr * gamma ^ iter, iter为当前迭代次数
  • “poly” - 学习率进行多项式误差衰减,返回 base_lr ( 1 - iter / max_iter ) ^ ( power )
  • “sigmoid” - 学习率进行sigmod函数衰减,返回 base_lr ( 1/ 1+exp ( -gamma * ( iter - stepsize ) ) )

gamma

这个参数就是和learning rate相关的,lr_policy中包含此参数的话,需要进行设置,一般是一个实数。

stepsize

This parameter indicates how often (at some iteration count) that we should move onto the next “step” of training. This value is a positive integer.

stepvalue

This parameter indicates one of potentially many iteration counts that we should move onto the next “step” of training. This value is a positive integer. There are often more than one of these parameters present, each one indicated the next step iteration.

max_iter

最大迭代次数,这个数值告诉网络何时停止训练,太小会达不到收敛,太大会导致震荡,为正整数。

momentum

上一次梯度更新的权重,real fraction

weight_decay

权重衰减项,用于防止过拟合。

solver_mode

选择CPU训练或者GPU训练。

snapshot

训练快照,确定多久保存一次model和solverstate,positive integer。

snapshot_prefix

snapshot的前缀,就是model和solverstate的命名前缀,也代表路径。

net

path to prototxt (train and val)

test_iter

每次test_interval的test的迭代次数,假设测试样本总数为10000张图片,一次性执行全部的话效率很低,所以将测试数据分为几个批次进行测试,每个批次的数量就是batch_size。如果batch_size=100,那么需要迭代100次才能将10000个数据全部执行完,所以test_iter设置为100。

test_interval

测试间隔,每训练多少次进行一次测试。

display

间隔多久对结果进行输出

iter_size

这个参数乘上train.prototxt中的batch size是你实际使用的batch size。 相当于读取batchsize * itersize个图像才做一下gradient decent。 这个参数可以规避由于gpu内存不足而导致的batchsize的限制 因为你可以用多个iteration做到很大的batch 即使单次batch有限。

average_loss

取多次foward的loss作平均,进行显示输出。

FCN的solver.prototxt文件

【深度学习】之Caffe的solver文件配置(转载自csdn)的更多相关文章

  1. 【转】Caffe的solver文件配置

    http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt ...

  2. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

  3. 深度学习框架-caffe安装-环境[Mac OSX 10.12]

    深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...

  4. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  5. 常用深度学习框——Caffe/ TensorFlow / Keras/ PyTorch/MXNet

    常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括Tenso ...

  6. Caffe学习系列(7):solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  7. caffe(7) solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  8. 【神经网络与深度学习】Caffe使用step by step:caffe框架下的基本操作和分析

    caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需 ...

  9. 开源深度学习架构Caffe

    Caffe 全称为 Convolutional Architecture for Fast Feature Embedding,是一个被广泛使用的开源深度学习框架(在 TensorFlow 出现之前一 ...

随机推荐

  1. vim笔记2

    用vim 快两年了 看过教程也不少,总的来说还是得自己多练习,当自己觉得有需要的时候,再添加功能.这里分享个看过的最好的教程,出自贴吧的某个朋友,写的很好 零 学会盲打 壹 配置文件先从最简开始,在 ...

  2. GridView导出excel格式问题

    在导出的点击事件中,代码如下: //指定导出对应单元格为文本样式 string style = @"<style> .test { vnd.ms-excel.numberform ...

  3. PAT题库-1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  4. Burp Suite 常用功能 0x01 扫描后台

    扫描后台: 代理→转到intruder 在链接后面添加变量,变量=后台地址t GET /§后台§ xt 注意: 配置完成点击菜单栏Intruder → start attack 开始扫描.

  5. codewars 随手记

    1.ES6数组遍历语法糖=> 在C#Linq里曾经用过,因此也不是很陌生. var range = Array.apply(null, Array(x)).map((_, i) => ++ ...

  6. PCH文件

    作用:xcode5 自带的一个文件,xcode以后这个文件需要自己手动创建(这个是xcode5 和xcode6最大的区别)提前编译文件,一般情况下.我们在pch文件中#import一些项目中常用的软件 ...

  7. SILVERLIGHT 应急卫生模拟演练项目之loading界面实现

    第一次在博客园写文章 俺是菜鸟 有不足之处还请大佬们多多指教 第一次也不知道该写啥 俺就拿自己最近做的一个项目 来细说吧 俺们公司是做医疗卫生方面的  其中有一块涉及到应急卫生模拟演练方面 这块分到我 ...

  8. RNN 入门学习资料整理

    建议按序阅读 1. RNN的一些简单概念介绍 A guide to recurrent neural networks and backpropagation Deep learning:四十九(RN ...

  9. matlab小段代码学习

    matlab读hdf文件到txt filename='E:\data\H1BDLD10110607231863921.L2B.HDF'; h=hdftool(filename); Latitude = ...

  10. metagenome 简介

    宏基因组 ( Metagenome)(也称微生物环境基因组 Microbial Environmental Genome, 或元基因组) .是由 Handelsman 等 1998 年提出的新名词, ...