[bzoj4552][Tjoi2016&Heoi2016]排序-二分+线段树
Brief Description
DZY有一个数列a[1..n],它是1∼n这n个正整数的一个排列。
现在他想支持两种操作:
0, l, r: 将a[l..r]原地升序排序。
1, l, r: 将a[l..r]原地降序排序。
操作完后,他会给你指定一个位置k,请你告诉他a[k]的值。
Algorithm Design
很好的一道题目, 反正我没有想到正解, 但是直接抄袭jcvb的bc题目就不太资辞了(连样例都抄也太懒了吧喂) , 附上原题地址.
这是一道良心的基础数据结构题。
我们二分a[k]的值,假设当前是mid,然后把大于mid的数字标为1,不大于mid的数字标为0。然后对所有操作做完以后检查一下a[k]位置上是0还是1。
因为只有两种值,所以操作还是不难做的。只要用一个线段树,支持区间求和、区间赋值即可。这样要排序一个区间时只要查询一下里面有几个1和几个0,然后把前半段赋值为0,后半段赋值为1即可(降序的话就是反过来)。
复杂度是\(O(mlog^2n)\)的。
这题用其他玄学做法或者用更加厉害的平衡树做法也是有可能AC的。
题解来自jcvb的官方题解
Code
#include <cstdio>
#define init int l = t[k].l, r = t[k].r, mid = (l + r) >> 1
const int maxn = 1e5 + 1e2;
int n, m, a[maxn], lambda, q;
struct seg {
int l, r, val, cov;
} t[maxn << 4];
struct op {
int a, b, c;
} o[maxn];
void update(int k) { t[k].val = t[k << 1].val + t[k << 1 | 1].val; }
void build(int k, int l, int r) {
t[k].l = l, t[k].r = r, t[k].cov = -1;
if (l == r) {
t[k].val = a[l] > lambda;
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
void pushdown(int k) {
if (t[k].cov != -1) {
t[k << 1].cov = t[k].cov;
t[k << 1 | 1].cov = t[k].cov;
t[k << 1].val = (t[k << 1].r - t[k << 1].l + 1) * (t[k].cov);
t[k << 1 | 1].val = (t[k << 1 | 1].r - t[k << 1 | 1].l + 1) * (t[k].cov);
t[k].cov = -1;
}
if (t[k].l < t[k].r)
update(k);
}
int query(int k, int x, int y) {
init;
pushdown(k);
if (x <= l && r <= y)
return t[k].val;
int ans = 0;
if (x <= mid)
ans += query(k << 1, x, y);
if (y > mid)
ans += query(k << 1 | 1, x, y);
return ans;
}
void modify(int k, int x, int y, int val) {
init;
pushdown(k);
if (x <= l && r <= y) {
t[k].val = (r - l + 1) * val;
t[k].cov = val;
return;
}
if (x <= mid)
modify(k << 1, x, y, val);
if (y > mid)
modify(k << 1 | 1, x, y, val);
update(k);
}
bool check(int x) {
lambda = x;
build(1, 1, n);
for (int i = 1; i <= m; i++) {
int opt = o[i].a, x = o[i].b, y = o[i].c;
int tmp = query(1, x, y);
if (opt == 0) {
modify(1, x, y - tmp, 0);
modify(1, y - tmp + 1, y, 1);
} else {
modify(1, x, x + tmp - 1, 1);
modify(1, x + tmp, y, 0);
}
}
return !query(1, q, q);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
int l = 1, r = n;
for (int i = 1; i <= m; i++) {
scanf("%d %d %d", &o[i].a, &o[i].b, &o[i].c);
}
scanf("%d", &q);
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid))
r = mid;
else
l = mid + 1;
}
printf("%d", r);
}
[bzoj4552][Tjoi2016&Heoi2016]排序-二分+线段树的更多相关文章
- 【BZOJ4552】[Tjoi2016&Heoi2016]排序 二分+线段树
[BZOJ4552][Tjoi2016&Heoi2016]排序 Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ...
- bzoj 4552: [Tjoi2016&Heoi2016]排序——二分+线段树
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)
解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...
- bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序
http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...
- BZOJ4552 [Tjoi2016&Heoi2016]排序 【二分 + 线段树】
题目链接 BZOJ4552 题解 之前去雅礼培训做过一道题,\(O(nlogn)\)维护区间排序并能在线查询 可惜我至今不能get 但这道题有着\(O(nlog^2n)\)的离线算法 我们看到询问只有 ...
- BZOJ4552:[TJOI2016&HEOI2016]排序(线段树,二分)
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- 2018.08.01 BZOJ4552: [Tjoi2016&Heoi2016]排序(二分+线段树)
传送门 线段树简单题. 二分答案+线段树排序. 实际上就是二分答案mid" role="presentation" style="position: relat ...
- BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个 ...
- [BZOJ4552][Tjoi2016&Heoi2016]排序(二分答案+线段树)
二分答案mid,将>=mid的设为1,<mid的设为0,这样排序就变成了区间修改的操作,维护一下区间和即可 然后询问第q个位置的值,为1说明>=mid,以上 时间复杂度O(nlog2 ...
随机推荐
- 本地如何使用phpstudy环境搭建多站点
http://jingyan.baidu.com/article/e52e36154227ef40c70c5147.html 平时在开发项目的时候, 多个项目同时开发的时候会遇到都得放到根目录才能正常 ...
- bootstrap简单图文环绕效果
一. 下载bootstrap-3.3.7 二. 在html页面引入css,js; eg: <link src="bootstrap-3.3.7-dist/css/b ...
- js 原型规则与示例
五大规则 1. 所有的引用类型( 数组 对象 函数 ) 都是 具有对象特性即自由拓展属性 (除了 "null")意外 2. 所有的引用类型(数组 对象 函数 ) 都有一个 prot ...
- java面向对象的三大特性——多态
多态 所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量倒底会指向哪个类的实例对象,该引用变量发出的方法调用到底 ...
- Java并发编程的艺术读书笔记(2)-并发编程模型
title: Java并发编程的艺术读书笔记(2)-并发编程模型 date: 2017-05-05 23:37:20 tags: ['多线程','并发'] categories: 读书笔记 --- 1 ...
- junit4X系列--Exception
原文出处:http://www.blogjava.net/DLevin/archive/2012/11/02/390684.html.感谢作者的无私分享. 说来惭愧,虽然之前已经看过JUnit的源码了 ...
- js中的监听事件总结
javascript事件与功能说明大全:http://tools.jb51.net/table/javascript_event 1.滚动条监听事件 例1:监听滚动条距离页面顶端距离 <scri ...
- 【转】linux grep命令
1.作用 Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来 2.格式 grep [options] 3.主要参数 [options]主要参数: - ...
- GTID复制详解
前言 GTID复制是MySQL 5.6后的新功能,在传统的方式里,主从切换后,需要找到binlog和POS点,然后执行命令change master to 指向新的主库.对于不是很有经验的人来说,往往 ...
- oralce plsql案例练习
以下plsql程序用的scott用户的dept,emp表. 案例1 --查询80,81,82,87年员工入职人数 set serveroutput on declare cursor cemp is ...