Brief Description

DZY有一个数列a[1..n],它是1∼n这n个正整数的一个排列。

现在他想支持两种操作:

0, l, r: 将a[l..r]原地升序排序。

1, l, r: 将a[l..r]原地降序排序。

操作完后,他会给你指定一个位置k,请你告诉他a[k]的值。

Algorithm Design

很好的一道题目, 反正我没有想到正解, 但是直接抄袭jcvb的bc题目就不太资辞了(连样例都抄也太懒了吧喂) , 附上原题地址.

这是一道良心的基础数据结构题。

我们二分a[k]的值,假设当前是mid,然后把大于mid的数字标为1,不大于mid的数字标为0。然后对所有操作做完以后检查一下a[k]位置上是0还是1。

因为只有两种值,所以操作还是不难做的。只要用一个线段树,支持区间求和、区间赋值即可。这样要排序一个区间时只要查询一下里面有几个1和几个0,然后把前半段赋值为0,后半段赋值为1即可(降序的话就是反过来)。

复杂度是\(O(mlog^2n)\)的。

这题用其他玄学做法或者用更加厉害的平衡树做法也是有可能AC的。

题解来自jcvb的官方题解

Code

#include <cstdio>
#define init int l = t[k].l, r = t[k].r, mid = (l + r) >> 1
const int maxn = 1e5 + 1e2;
int n, m, a[maxn], lambda, q;
struct seg {
int l, r, val, cov;
} t[maxn << 4];
struct op {
int a, b, c;
} o[maxn];
void update(int k) { t[k].val = t[k << 1].val + t[k << 1 | 1].val; }
void build(int k, int l, int r) {
t[k].l = l, t[k].r = r, t[k].cov = -1;
if (l == r) {
t[k].val = a[l] > lambda;
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
void pushdown(int k) {
if (t[k].cov != -1) {
t[k << 1].cov = t[k].cov;
t[k << 1 | 1].cov = t[k].cov;
t[k << 1].val = (t[k << 1].r - t[k << 1].l + 1) * (t[k].cov);
t[k << 1 | 1].val = (t[k << 1 | 1].r - t[k << 1 | 1].l + 1) * (t[k].cov);
t[k].cov = -1;
}
if (t[k].l < t[k].r)
update(k);
}
int query(int k, int x, int y) {
init;
pushdown(k);
if (x <= l && r <= y)
return t[k].val;
int ans = 0;
if (x <= mid)
ans += query(k << 1, x, y);
if (y > mid)
ans += query(k << 1 | 1, x, y);
return ans;
}
void modify(int k, int x, int y, int val) {
init;
pushdown(k);
if (x <= l && r <= y) {
t[k].val = (r - l + 1) * val;
t[k].cov = val;
return;
}
if (x <= mid)
modify(k << 1, x, y, val);
if (y > mid)
modify(k << 1 | 1, x, y, val);
update(k);
}
bool check(int x) {
lambda = x;
build(1, 1, n);
for (int i = 1; i <= m; i++) {
int opt = o[i].a, x = o[i].b, y = o[i].c;
int tmp = query(1, x, y);
if (opt == 0) {
modify(1, x, y - tmp, 0);
modify(1, y - tmp + 1, y, 1);
} else {
modify(1, x, x + tmp - 1, 1);
modify(1, x + tmp, y, 0);
}
}
return !query(1, q, q);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
int l = 1, r = n;
for (int i = 1; i <= m; i++) {
scanf("%d %d %d", &o[i].a, &o[i].b, &o[i].c);
}
scanf("%d", &q);
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid))
r = mid;
else
l = mid + 1;
}
printf("%d", r);
}

[bzoj4552][Tjoi2016&Heoi2016]排序-二分+线段树的更多相关文章

  1. 【BZOJ4552】[Tjoi2016&Heoi2016]排序 二分+线段树

    [BZOJ4552][Tjoi2016&Heoi2016]排序 Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ...

  2. bzoj 4552: [Tjoi2016&Heoi2016]排序——二分+线段树

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  3. [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)

    解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...

  4. bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序

    http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...

  5. BZOJ4552 [Tjoi2016&Heoi2016]排序 【二分 + 线段树】

    题目链接 BZOJ4552 题解 之前去雅礼培训做过一道题,\(O(nlogn)\)维护区间排序并能在线查询 可惜我至今不能get 但这道题有着\(O(nlog^2n)\)的离线算法 我们看到询问只有 ...

  6. BZOJ4552:[TJOI2016&HEOI2016]排序(线段树,二分)

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  7. 2018.08.01 BZOJ4552: [Tjoi2016&Heoi2016]排序(二分+线段树)

    传送门 线段树简单题. 二分答案+线段树排序. 实际上就是二分答案mid" role="presentation" style="position: relat ...

  8. BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个 ...

  9. [BZOJ4552][Tjoi2016&Heoi2016]排序(二分答案+线段树)

    二分答案mid,将>=mid的设为1,<mid的设为0,这样排序就变成了区间修改的操作,维护一下区间和即可 然后询问第q个位置的值,为1说明>=mid,以上 时间复杂度O(nlog2 ...

随机推荐

  1. 邓_ Jqery·笔记本【照片】

    -------------------------------------------------------------------------------------------- [PHP] - ...

  2. intent详解(一)

    摘录自:http://blog.csdn.net/harvic880925/article/details/38399723 前言:通过重新翻看Android入门书籍,才发现原来自己露掉了那么多基础知 ...

  3. java实现最小生成树的prim算法和kruskal算法

    在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...

  4. MYSQL问题解决方案:Access denied for user 'root'@'localhost' (using password:YES)

    这两天在MyEclipse中开发Web项目时,连接MYSQL数据库,出现问题:Access denied for user 'root'@'localhost' (using password:YES ...

  5. 如何在同一台机器上安装多个MySQL的实例

    转自:'http://www.cnblogs.com/shangzekai/p/4375271.html 最近由于工作的需要,需要在同一台机器上搭建两个MySQL的实例,(注:已经存在了一个3306的 ...

  6. junit4X系列--Builder、Request与JUnitCore

    原文出处:http://www.blogjava.net/DLevin/archive/2012/05/12/377957.html.感谢作者的无私分享. 初次用文字的方式记录读源码的过程,不知道怎么 ...

  7. Python简单爬虫Requests

    首先添加库 附配环境变量:安装环境变量 cmd==> 输入指令: path=%path%;C:\Python(Python安装路径) 回车 python2.7版本可能没有pip的话可以先到www ...

  8. JavaScript 函数创建思想

    //定义一个函数的步骤//1.开辟一个新的空间地址//2.把函数体里面的代码当做字符串存储到空间里面(一个函数如果只定义了,没有执行的话,这个函数没有任何意义)//3.在把我们的地址给我们的函数名fu ...

  9. Struts2.3.34+Hibernate 4.x+Spring4.x 整合二部曲之上部曲

    1 导入jar包 可以复制jar包或maven导入,本文最后会给出github地址 2 导入log4j.properties文件 og4j.appender.stdout=org.apache.log ...

  10. JavaScript this浅析

    在做聊天室的过程中,我遇到了一个小问题,在javascrip中,有没有和c语言中的静态变量类似的对象呢? 答案就在闭包之中. 而说到闭包,又得说说那个我视之如地雷的this.this搞明白了,闭包这东 ...