[SDOI2011]染色
[SDOI2011]染色
题目描述
输入输出格式
输出格式:
对于每个询问操作,输出一行答案。
解法
ps:这题本来是树剖的,但我用lct写的,以下是lct的写法,树剖会有所不同
我们考虑把连接不同色点的边权值设为1,连接同色的点的边权设为0,这样我们就可以把问题转化为查询这条路径上所有的边权和,你要输出的就是这个答案加一。
对于维护,我们对每条路径维护一个最左端点的值和最右端点的值,这样就可以统计O(1)地合并信息,修改时做一个懒标记,下放时将当前ans清零再修改左右端点即可。
区间反转时左右端点也要反转
区间反转时左右端点也要反转
区间反转时左右端点也要反转
重要的话说三遍(我就被坑了好久)。
代码
#include<bits/stdc++.h>
#define rg register
using namespace std;
int gi(){
char a=getchar();int b=0;
while(a<'0'||a>'9')a=getchar();
while(a>='0'&&a<='9')b=b*10+a-'0',a=getchar();
return b;
}
const int N=1e6;
int fa[N],ch[N][2],ans[N],w[N],l[N],r[N],lazy1[N],lazy2[N],fz[N],top;
int get(int x){return ch[fa[x]][1]==x;}
int isroot(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
void pushdown(int x){
rg int L=ch[x][0],R=ch[x][1];
if(lazy1[x]){
swap(ch[x][0],ch[x][1]);
swap(l[L],r[L]);
swap(l[R],r[R]);
lazy1[L]^=1;
lazy1[R]^=1;
lazy1[x]^=1;
}
if(lazy2[x]){
w[x]=l[x]=r[x]=lazy2[L]=lazy2[R]=lazy2[x];
lazy2[x]=0;
ans[x]=0;
}
}
void pushup(int x){
pushdown(ch[x][0]);
pushdown(ch[x][1]);
ans[x]=0;
if(ch[x][0]){
l[x]=l[ch[x][0]];
if(w[x]!=r[ch[x][0]])ans[x]++;
}
else l[x]=w[x];
if(ch[x][1]){
r[x]=r[ch[x][1]];
if(w[x]!=l[ch[x][1]])ans[x]++;
}
else r[x]=w[x];
ans[x]+=ans[ch[x][0]]+ans[ch[x][1]];
}
void rotate(int x){
int y=fa[x],z=fa[y],k=get(x);
fa[x]=z;if(!isroot(y))ch[z][ch[z][1]==y]=x;
ch[y][k]=ch[x][k^1];fa[ch[y][k]]=y;
fa[y]=x;ch[x][k^1]=y;
pushup(y);pushup(x);
}
void splay(int x){
for(int i=x;;i=fa[i]){
fz[++top]=i;
if(isroot(i))break;
}
while(top){pushdown(fz[top--]);}
while(!isroot(x)){
int y=fa[x];
if(!isroot(y))
if(get(x)==get(y))rotate(y);
else rotate(x);
rotate(x);
}
}
void access(int x){for(int y=0;x;y=x,x=fa[x])splay(x),ch[x][1]=y,pushup(x);}
void makeroot(int x){access(x);splay(x);lazy1[x]^=1;}
void link(int x,int y){makeroot(x);fa[x]=y;}
void split(int x,int y){makeroot(x);access(y);splay(y);}
void update(int x,int y,int k){split(x,y);lazy2[y]=k;}
void query(int x,int y){split(x,y);printf("%d\n",ans[y]+1);}
int main(){
int n=gi(),m=gi();
for(int i=1;i<=n;++i){
w[i]=gi();
l[i]=r[i]=w[i];
}
for(int i=1;i<n;++i){
int x=gi(),y=gi();
link(x,y);
}
while(m--){
char op=getchar();
while(op!='C'&&op!='Q')op=getchar();
if(op=='C'){
int x=gi(),y=gi(),k=gi();
update(x,y,k);
}
if(op=='Q'){
int x=gi(),y=gi();
query(x,y);
}
}
return 0;
}
[SDOI2011]染色的更多相关文章
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
- bzoj-2243 2243: [SDOI2011]染色(树链剖分)
题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6267 Solved: 2291 Descript ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- bzoj2243:[SDOI2011]染色
链剖就可以了.一开始的想法错了.但也非常接近了.妈呀调的要死...然后把字体再缩小一号查错起来比较容易QAQ. #include<cstdio> #include<cstring&g ...
- bzoj 2243 [SDOI2011]染色(树链剖分,线段树)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4637 Solved: 1726[Submit][Status ...
- Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5020 Solved: 1872[Submit][Status ...
- 2243: [SDOI2011]染色
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3113 Solved: 1204[Submit][Status ...
- bzoj 2243 [SDOI2011]染色(树链剖分+线段树合并)
[bzoj2243][SDOI2011]染色 2017年10月20日 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询 ...
- bzoj2243[SDOI2011]染色 树链剖分+线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9012 Solved: 3375[Submit][Status ...
随机推荐
- Flex报错之一
1.错误描述 TypeError: Error #1009: 无法访问空对象引用的属性或方法. at com.gwtjs.components::DetailWindow/completeHandle ...
- Codeforces Round #425 (Div. 2) D.Misha, Grisha and Underground
我奇特的脑回路的做法就是 树链剖分 + 树状数组 树状数组是那种 区间修改,区间求和,还有回溯的 当我看到别人写的是lca,直接讨论时,感觉自己的智商收到了碾压... #include<cmat ...
- iOS - Swift Enumerations or how to annoy Tom
@import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...
- ontimer 与多线程
一般来说,在MFC中开启一个UI线程可以用以下代码: m_pCameraThread = AfxBeginThread(RUNTIME_CLASS(CCameraThread)); if (!m_pC ...
- 修复TortoiseGit文件夹和文件图标不显示
原文:http://blog.moocss.com/tutorials/git/1823.html 一. 我的运行环境: 操作系统 Windows 7/8 32bit TortoiseGit (1.7 ...
- Linux之权限管理
一.文件基本权限 1) 基本权限的修改 第一位"-"为文件类型(-代表文件:d代表目录:l代表软链接文件即快捷方式),后面每3位一组. -rw-r--r-- rw- u所有者 ...
- Python基础__函数
本节将进入函数的介绍,函数是Python基础中最精彩的部分之一,接下来将对函数做详细介绍.函数 函数就是对代码进行一个封装.把实现某一功能的代码进行封装到一起.下次需要使用时不需要进行编写代码直接调用 ...
- [Luogu3242][HNOI2015]接水果
Luogu 我今天做两道整体二分结果全都是BZOJ权限题??? sol 我们抓住"盘子的路径是水果的路径的子路径"这个条件. 考虑每一个盘子路径\((u,v)\),讨论它可以作为哪 ...
- luogu1402 酒店之王
题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...
- haproxy实现会话保持(1):cookie
*/ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...