对C语言中递归算法的分析
C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。
许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐怖。
这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。
我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系:
‘0’+ 0 =‘0’
‘0’+ 1 =‘1’
‘0’+ 2 =‘2’
...
从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。
这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。
我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。
这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,它便不在调用自身。
在程序中,递归函数的限制条件就是变量quotient为零。在每次递归调用之前,我们都把quotient除以10,所以每递归调用一次,它的值就越来越接近零。当它最终变成零时,递归便告终止。
/*接受一个整型值(无符号0,把它转换为字符并打印它,前导零被删除*/
#include <stdio.h>
int binary_to_ascii( unsigned int value)
{
unsigned int quotient;
quotient = value / 10;
if( quotient != 0)
binary_to_ascii( quotient);
putchar ( value % 10 + '0' );
}
递归是如何帮助我们以正确的顺序打印这些字符呢?下面是这个函数的工作流程。
1. 将参数值除以10
2. 如果quotient的值为非零,调用binary-to-ascii打印quotient当前值的各位数字
3. 接着,打印步骤1中除法运算的余数
注意在第2个步骤中,我们需要打印的是quotient当前值的各位数字。我们所面临的问题和最初的问题完全相同,只是变量quotient的值变小了。我们用刚刚编写的函数(把整数转换为各个数字字符并打印出来)来解决这个问题。由于quotient的值越来越小,所以递归最终会终止。
一旦你理解了递归,阅读递归函数最容易的方法不是纠缠于它的执行过程,而是相信递归函数会顺利完成它的任务。如果你的每个步骤正确无误,你的限制条件设置正确,并且每次调用之后更接近限制条件,递归函数总是能正确的完成任务。
但是,为了理解递归的工作原理,你需要追踪递归调用的执行过程,所以让我们来进行这项工作。追踪一个递归函数的执行过程的关键是理解函数中所声明的变量是如何存储的。当函数被调用时,它的变量的空间是创建于运行时堆栈上的。以前调用的函数的变量扔保留在堆栈上,但他们被新函数的变量所掩盖,因此是不能被访问的。
当递归函数调用自身时,情况于是如此。每进行一次新的调用,都将创建一批变量,他们将掩盖递归函数前一次调用所创建的变量。当我追踪一个递归函数的执行过程时,必须把分数不同次调用的变量区分开来,以避免混淆。
程序中的函数有两个变量:参数value和局部变量quotient。下面的一些图显示了堆栈的状态,当前可以访问的变量位于栈顶。所有其他调用的变量饰以灰色的阴影,表示他们不能被当前正在执行的函数访问。
假定我们以4267这个值调用递归函数。当函数刚开始执行时,堆栈的内容如下图所示:
不算递归调用语句本身,到目前为止所执行的语句只是除法运算以及对quotient的值进行测试。由于递归调用这些语句重复执行,所以它的效果类似循环:当quotient的值非零时,把它的值作为初始值重新开始循环。但是,递归调用将会保存一些信息(这点与循环不同),也就好是保存在堆栈中的变量值。这些信息很快就会变得非常重要。
现在quotient的值变成了零,递归函数便不再调用自身,而是开始打印输出。然后函数返回,并开始销毁堆栈上的变量值。
每次调用putchar得到变量value的最后一个数字,方法是对value进行模10取余运算,其结果是一个0到9之间的整数。把它与字符常量‘0’相加,其结果便是对应于这个数字的ASCII字符,然后把这个字符打印出来。
接着函数返回,它的变量从堆栈中销毁。接着,递归函数的前一次调用重新继续执行,她所使用的是自己的变量,他们现在位于堆栈的顶部。因为它的value值是42,所以调用putchar后打印出来的数字是2。
接着递归函数的这次调用也返回,它的变量也被销毁,此时位于堆栈顶部的是递归函数再前一次调用的变量。递归调用从这个位置继续执行,这次打印的数字是6。在这次调用返回之前,堆栈的内容如下:
现在我们已经展开了整个递归过程,并回到该函数最初的调用。这次调用打印出数字7,也就是它的value参数除10的余数。
然后,这个递归函数就彻底返回到其他函数调用它的地点。
如果你把打印出来的字符一个接一个排在一起,出现在打印机或屏幕上,你将看到正确的值:4267
使用递归一定要有跳出的条件:
这是一个最简单的递归, 不过它会一直执行, 可用 Ctrl+C 终止.
#include <stdio.h>
void prn(int num) {
printf("%d/n", num);
if (num > 0) prn(--num);
}
int main(void)
{
prn(9);
getchar();
return 0;
}
实例: 翻转字符串
#include <stdio.h>
void revers(char *cs);
int main(void)
{
revers("123456789");
getchar();
return 0;
}
void revers(char *cs)
{
if (*cs)
{
revers(cs + 1);
putchar(*cs);
}
}
实例: 阶乘
#include <stdio.h>
int factorial(int num);
int main(void)
{
int i;
for (i = 1; i <= 9; i++)
printf("%d: %d/n", i, factorial(i));
getchar();
return 0;
}
int factorial(int num)
{
if (num == 1)
return(1);
else
return(num * factorial(num-1));
}
实例: 整数到二进制
#include <stdio.h>
void IntToBinary(unsigned num);
int main(void)
{
IntToBinary(255); /* 11111111 */
getchar();
return 0;
}
void IntToBinary(unsigned num) {
int i = num % 2;
if (num > 1) IntToBinary(num / 2);
putchar(i ? '1' : '0');
// putchar('0' + i); /* 可代替上面一句 */
}
剖析递归:
#include <stdio.h>
void prn(unsigned n);
int main(void)
{
prn(1);
getchar();
return 0;
}
void prn(unsigned n) {
printf("%d: %p/n", n, &n); /* A */
if (n < 4)
prn(n+1); /* B */
printf("%d: %p/n", n, &n); /* C */
}
本例输出效果图:分析: 程序运行到 A, 输出了第一行. 此时 n=1, 满足 < 4 的条件, 继续执行 B 开始了自调用(接着会输出第二行); 注意 n=1 时语句 C 还有待执行. ...如此循环, 一直到 n=4, A 可以执行, 但因不满足条件 B 执行不了了; 终于在 n=4 时得以执行 C. 但此时内存中有四个函数都等待返回(分别是 n=1、2、3、4 时), 咱们分别叫它 f1、f2、f3、f4. f4 执行 C 输出了第五行, 函数返回, 返回给 f3(此时 n=3), f3 得以继续执行 C, 输出了第六行. f3 -> f2 -> 继续 C, 输出了第七行. f2 -> f1 -> 继续 C, 输出了第八行, 执行完毕! 如此看来, 递归函数还是很费内存的(有时不如直接使用循环), 但的确很巧妙.
对C语言中递归算法的分析的更多相关文章
- c语言中函数调用的本质从汇编角度分析
今天下午写篇博客吧,分析分析c语言中函数调用的本质,首先我们知道c语言中函数的本质就是一段代码,但是给这段代码起了一个名字,这个名字就是他的的这段代码的开始地址 这也是函数名的本质,其实也就是汇编中的 ...
- 以杨辉三角为例,从内存角度简单分析C语言中的动态二维数组
学C语言,一定绕不过指针这一大难关,而指针最让人头疼的就是各种指向关系,一阶的指针还比较容易掌握,但一旦阶数一高,就很容易理不清楚其中的指向关系,现在我将通过杨辉三角为例,我会用四种方法从内存的角度简 ...
- C语言中的优先级和类型转换分析
一.优先级 1.易错的优先级 二.类型转换 在C语言中,存在强制类型装换,也存在隐式类型转换,隐式类型转换实际上属于强制类型转换,隐式类型转换要点如图. (1)举例:算术运算式中,低类型转换为高类型 ...
- C语言终极面试及答案分析
第一部分:基本概念及其它问答题 .关键字static的作用是什么? 这个简单的问题很少有人能回答完全.在C语言中,关键字static有三个明显的作用: ). 在函数体,一个被声明为静态的变量在这一函数 ...
- Java语言中的面向对象特性总结
Java语言中的面向对象特性 (总结得不错) [课前思考] 1. 什么是对象?什么是类?什么是包?什么是接口?什么是内部类? 2. 面向对象编程的特性有哪三个?它们各自又有哪些特性? 3. 你知 ...
- 在C语言中利用PCRE实现正则表达式
1. PCRE简介 2. 正则表达式定义 3. PCRE正则表达式的定义 4. PCRE的函数简介 5. 使用PCRE在C语言中实现正则表达式的解析 6. PCRE函数在C语言中的使用小例子 1. P ...
- C语言中的回调函数(Callback Function)
1 定义和使用场合 回调函数是指 使用者自己定义一个函数,实现这个函数的程序内容,然后把这个函数(入口地址)作为参数传入别人(或系统)的函数中,由别人(或系统)的函数在运行时来调用的函数.函数是你实现 ...
- (待续)C#语言中的动态数组(ArrayList)模拟常用页面置换算法(FIFO、LRU、Optimal)
目录 00 简介 01 算法概述 02 公用方法与变量解释 03 先进先出置换算法(FIFO) 04 最近最久未使用(LRU)算法 05 最佳置换算法(OPT) 00 简介 页面置换算法主要是记录内存 ...
- C语言中两位ASCII码可以表示汉字
最近偶然有人问到这个相关字符编码的问题,所以百度了下参考了这两个资料,进行了简单分析. ******************************************************** ...
随机推荐
- ejabberd开发和部署
ejabberd开发和部署 (金庆的专栏 2016.10) 搭建了自己的ejabberd集群,然后少量更改源码,实现定制的XMPP服务器. 从github fork ejabberd 库,定为 mas ...
- 搜索引擎solr和elasticsearch
刚开始接触搜索引擎,网上收集了一些资料,在这里整理了一下分享给大家. 一.关于搜索引擎 搜索引擎(Search Engine)是指根据一定的策略.运用特定的计算机程序从互联网上搜集信息,在对信息进行组 ...
- Android5.0特性阴影效果和裁剪
阴影和剪裁 View的z属性 Material Design建议为了凸显布局的层次,建议使用阴影效果,并且Android L为了简化大家的工作,对View进行了扩展,能使大家非常方便的创建阴影效果: ...
- 算法之路(三)----查找斐波纳契数列中第 N 个数
算法题目 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: * 前2个数是 0 和 1 . * 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1 ...
- Appium移动自动化测试(三)--安装Android模拟器(建议直接连手机,跳过此步)
转自虫师,亲测有效,留备后用. 本文中如果直接安装时不出现错误,则可以忽略(一.二.三.四.五),我安装的是5.1.1,直接成功,就是有点慢,要有耐心. 如果到最后一步,启动不起来,报错: emula ...
- django-redis
linuxapt-get install redis-serverpip install django-redis vim /etc/redis/redis.conf maxmemory 20mb s ...
- 用Python最原始的函数模拟eval函数的浮点数运算功能
前几天看一个网友提问,如何计算'1+1'这种字符串的值,不能用eval函数. 我仿佛记得以前新手时,对这个问题完全不知道如何下手. 我觉得处理括号实在是太复杂了,多层嵌套括号怎么解析呢?一些多余的括号 ...
- socket系列之什么是socket
1.什么是socket Socket是应用层与TCP/IP协议族通信的中间抽象层,它是一组接口,应用层通过调用这些接口实现发送和接收数据.一般这种抽象层由操作系统提供或者由JVM自己实现.使用sock ...
- NewSQL数据库VoltDB特性简介
VoltDB是一个革命性的新型数据库产品,被称作NewSQL数据库.它基于H-Store,号称比当前数据库产品的吞吐量高45倍,同时又具有很高的扩展性.它的特性主要有以下几点: Ø 高吞吐.低延迟: ...
- UNIX网络编程——原始套接字(dos攻击)
原始套接字(SOCK_RAW).应用原始套接字,我们可以编写出由TCP和UDP套接字不能够实现的功能. 注意原始套接字只能够由有 root权限的人创建. 可以参考前面的博客<<UNIX网络 ...
分析:
程序运行到 A, 输出了第一行.
此时 n=1, 满足 < 4 的条件, 继续执行 B 开始了自调用(接着会输出第二行); 注意 n=1 时语句 C 还有待执行.
...如此循环, 一直到 n=4, A 可以执行, 但因不满足条件 B 执行不了了; 终于在 n=4 时得以执行 C.
但此时内存中有四个函数都等待返回(分别是 n=1、2、3、4 时), 咱们分别叫它 f1、f2、f3、f4.
f4 执行 C 输出了第五行, 函数返回, 返回给 f3(此时 n=3), f3 得以继续执行 C, 输出了第六行.
f3 -> f2 -> 继续 C, 输出了第七行.
f2 -> f1 -> 继续 C, 输出了第八行, 执行完毕!
如此看来, 递归函数还是很费内存的(有时不如直接使用循环), 但的确很巧妙.