Description

解题报告:

因为给定答案范围,暴力枚举时间,然后再两两枚举野人,判断是否有可能在某一年相遇,我们设这一年为\(x\),那么显然相交的条件是:

\(x*(p[i]-p[j])+y*M=s[j]-s[i]\)

扩展欧几里得求得 \(x\) 的最小正整数解,判断这个线性方程的解是否存在且在他们寿命期内即可

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=20;
int n,s[N],p[N],lim[N];
ll exgcd(ll a,ll b,ll &x,ll &y){
if(a%b==0){x=0;y=1;return b;}
ll c=exgcd(b,a%b,x,y);
ll tmp=y;
y=x-a/b*y;
x=tmp;
return c;
}
bool judge(ll a,ll b,ll c,ll li){
ll x,y;
ll gcd=exgcd(a,b,x,y);
if(abs(c%gcd)!=0)return true;
x*=c/gcd;
ll d=b/gcd;if(d<0)d=-d;
x=((x%d)+d)%d;
if(x<=li)return false;
return true;
}
bool check(int x){
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(!judge(p[j]-p[i],x,s[i]-s[j],Min(lim[i],lim[j])))return false;
return true;
}
void work()
{
int mx=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d%d",&s[i],&p[i],&lim[i]),mx=Max(s[i],mx);
for(int i=mx;i<=1000000;i++){
if(check(i)){printf("%d\n",i);return ;}
}
} int main()
{
work();
return 0;
}

bzoj 1407: [Noi2002]Savage的更多相关文章

  1. BZOJ 1407: [Noi2002]Savage( 数论 )

    枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans ...

  2. 【扩展欧几里得】Bzoj 1407: [Noi2002]Savage

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目.第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0 ...

  3. bzoj 1407: [Noi2002]Savage【扩展欧几里得+中国剩余定理】

    首先答案不会很大,所以枚举答案m,于是把问题转为了判定: 关于如何判定: 首先题目中虽然没说但是数据是按照初始洞穴编号排的序,所以并不用自己重新再排 假设当前答案为m,相遇时间为x,野人i和j,那么可 ...

  4. 1407: [Noi2002]Savage

    其实答案远不到1e6 所以可以枚举! 设答案是m 那\(i,j\)的相遇就可以表示成\(P_ix+C_i=P_jx+C_j+ym\) 移向就是\((P_i-P_j)x-ym=C_j-C_i\) 套扩展 ...

  5. BZOJ1407 NOI2002 Savage 【Exgcd】

    BZOJ1407 NOI2002 Savage Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...

  6. [Noi2002]Savage

    [Noi2002]Savage 数学题. 题解回去写(有个坑点) flag++ #include <cstdio> int n,m,c[25],p[29],l[29]; int exgcd ...

  7. [Noi2002]Savage 题解

    [Noi2002]Savage 时间限制: 5 Sec  内存限制: 64 MB 题目描述 输入 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci ...

  8. 【BZOJ 1407】[Noi2002]Savage ExGCD

    我bitset+二分未遂后就来用ExGCD了,然而这道题的时间复杂度还真是玄学...... 我们枚举m然后对每一对用ExGCD判解,我们只要满足在最小的一方死亡之前无解就可以了,对于怎么用,就是ax+ ...

  9. 【bzoj 1407】【Noi2002】Savage

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...

随机推荐

  1. Linux下vim上编辑实现进度条

    1.效果展示: 进度条,先来看一个效果: 这是进度结果,模拟实现了进度条的前进.百分比的现实.以及稍微的动画特效. 2.原理描述: 因为Linux系统下的输出有缓存,如果及时刷新显示,就可以得到我们想 ...

  2. 使用SecureCRTP 连接生产环境的web服务器和数据库服务器

    一.使用SecureCRTP 连接生产环境的web服务器 首先,需要知道以下参数信息: 1.web服务器的ip地址     2.服务器的端口号    3.会话连接的用户名和密码   4.服务器的用户名 ...

  3. python 操作SQLAlchemy

    SQLAlchemy python链接 pymysql mysql+pymysql://<username>:<password>@<host>/<dbnam ...

  4. RAID 损坏后如何对物理硬盘做完整镜像

    "磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能.利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上." ...

  5. Node入门教程(4)第三章:第一个 Nodejs 程序

    第一个 Nodejs 程序 本教程仅适合您已经有一定的JS编程的基础或者是后端语言开发的基础.如果您是零基础,建议您先学一下老马的前端免费视频教程 第一步:创建项目文件夹 首先创建 demos 文件夹 ...

  6. 《网络》:设置三个密码:通过console口连接设备,进入特权模式,登录Telnet

    软件:Cisco Packet Tracer Instructor 软件下载链接在上一篇文章中. 内容:通过设置三个密码,熟悉采用Telnet方式配置交换机的方法. 细节说明:计算机的IP地址和交换机 ...

  7. GIT入门笔记(15)- 链接到私有GitLab仓库

    GitLab是利用 Ruby on Rails 一个开源的版本管理系统,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目.它拥有与Github类似的功能,能够浏览源代码,管理 ...

  8. .NET:持续进化的统一开发平台

    阅读文本大概需要 8 分钟. 标题使用的是进化这个词语,是因为 .NET 在不断的努力,也在不断的重构. 这篇文章的更多目的和意义在于科普,俗称"传教". # 持续进化的 .NET ...

  9. Angular UI框架 Ng-alain @delon的脚手架的生成开发模板

    前言 首先感谢下 cipchk基于 Ng-Zorror 框架上制作的ng-alain . 之前很早就关注了 ng-alain,今天得空折腾了下. 折腾的时候发现官方文档有些坑,没有写清楚,所以我作为一 ...

  10. C# 读取网页JSON数据

    场景描述: 公司和别的系统需要对接,现在对方提供一个网址,数据都是json字符串,我需要对json数据进行处理. 提供的json数据如下格式 一.读取网址中的json数据 public string ...