Common Substrings
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 9248   Accepted: 3071

Description

A substring of a string T is defined as:

T(ik)=TiTi+1...Ti+k-1, 1≤ii+k-1≤|T|.

Given two strings AB and one integer K, we define S, a set of triples (ijk):

S = {(ijk) | kKA(ik)=B(jk)}.

You are to give the value of |S| for specific AB and K.

Input

The input file contains several blocks of data. For each block, the first line contains one integer K, followed by two lines containing strings A and B, respectively. The input file is ended byK=0.

1 ≤ |A|, |B| ≤ 105
1 ≤ K ≤ min{|A|, |B|}
Characters of A and B are all Latin letters.

Output

For each case, output an integer |S|.

 
/*
POJ 3415 不小于k的公共子串的个数(思路) 给你两个子串求长度不小于k的公共子串的个数 因为每次枚举一个子串就要和前面所有另一个串的所有已经出现情况取一个最小值
如果每次都把所有的扫描一遍的话很浪费时间,而且是与前面的所有取min,所有用栈保存的话
栈顶的肯定是最大值,所以栈内元素就成单调增的了。 每次只需要更新比当前值大的情况就好了 从头到尾枚举height,如果当前是属于A串,则加上前面所有属于B串的height-k+1.对于B串同理.
两个串之间的公共前缀是它们之间所有的最小值,所以用栈维护一下,保证栈里是单调递增的,
这样对于新增的串只需要处理其中height大于它的一部分即可 hhh-2016-03-15 23:25:42
*/
#include <algorithm>
#include <cmath>
#include <queue>
#include <iostream>
#include <cstring>
#include <map>
#include <cstdio>
#include <vector>
#include <functional>
#define lson (i<<1)
#define rson ((i<<1)|1)
using namespace std;
typedef long long ll;
const int maxn = 200050; int t1[maxn],t2[maxn],c[maxn];
bool cmp(int *r,int a,int b,int l)
{
return r[a]==r[b] &&r[l+a] == r[l+b];
} void get_sa(int str[],int sa[],int Rank[],int height[],int n,int m)
{
n++;
int p,*x=t1,*y=t2;
for(int i = 0; i < m; i++) c[i] = 0;
for(int i = 0; i < n; i++) c[x[i] = str[i]]++;
for(int i = 1; i < m; i++) c[i] += c[i-1];
for(int i = n-1; i>=0; i--) sa[--c[x[i]]] = i;
for(int j = 1; j <= n; j <<= 1)
{
p = 0;
for(int i = n-j; i < n; i++) y[p++] = i;
for(int i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j;
for(int i = 0; i < m; i++) c[i] = 0;
for(int i = 0; i < n; i++) c[x[y[i]]]++ ;
for(int i = 1; i < m; i++) c[i] += c[i-1];
for(int i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i]; swap(x,y);
p = 1;
x[sa[0]] = 0;
for(int i = 1; i < n; i++)
x[sa[i]] = cmp(y,sa[i-1],sa[i],j)? p-1:p++;
if(p >= n) break;
m = p;
}
int k = 0;
n--;
for(int i = 0; i <= n; i++)
Rank[sa[i]] = i;
for(int i = 0; i < n; i++)
{
if(k) k--;
int j = sa[Rank[i]-1];
while(str[i+k] == str[j+k]) k++;
height[Rank[i]] = k;
}
} int Rank[maxn];
int sa[maxn];
int str[maxn],mark[4],height[maxn];
char s1[maxn],s2[maxn];
ll num[4],ans[maxn]; ll solve(int len,int n,int k)
{
int top = 0;
ll sum = 0;
num[1] = num[2] = 0;
for(int i = 1; i <= n; i++)
{
if(height[i] < k)
top = num[1] = num[2] = 0;
else
{
for(int j = top; ans[j] > height[i]+1-k && j; j--)
{
num[mark[j]] += (height[i]-k+1-ans[j]);
ans[j] = height[i]-k+1;
}
ans[++top] = height[i]-k+1;
if(sa[i-1]<len) mark[top] = 1;
if(sa[i-1]>len) mark[top] = 2;
num[mark[top]] += height[i]-k+1;
if(sa[i] < len) sum += num[2];
if(sa[i] > len) sum += num[1];
}
}
return sum;
} int main()
{
int k;
while(scanf("%d",&k) != EOF && k)
{
scanf("%s",s1);
scanf("%s",s2);
int tot = 0;
int len1 = strlen(s1);
for(int i = 0; s1[i]!='\0'; i++)
str[tot++] = s1[i];
str[tot++] = 1;
for(int i = 0; s2[i]!='\0'; i++)
str[tot++] = s2[i];
str[tot] = 0;
get_sa(str,sa,Rank,height,tot,200);
// for(int i = 2;i <= tot;i++)
// printf("%d ",height[i]);
// printf("\n");
cout << solve(len1,tot,k) <<endl;
}
return 0;
}

  

POJ 3415 不小于k的公共子串的个数的更多相关文章

  1. POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)

    http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...

  2. POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】

    传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...

  3. 【POJ 3415】Common Substrings 长度不小于k的公共子串的个数

    长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!! 没开long long毁一生again--- 以后应该早看POJ里的Discuss啊QAQ #inclu ...

  4. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  5. Common Substrings POJ - 3415(长度不小于k的公共子串的个数)

    题意: 给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同) 分两部分求和sa[i-1] > len1  sa[i] < len1  和  sa[i-1] < ...

  6. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  7. POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)

    题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...

  8. 【poj3415-长度不小于k的公共子串个数】后缀数组+单调栈

    这题曾经用sam打过,现在学sa再来做一遍. 基本思路:计算A所有的后缀和B所有后缀之间的最长公共前缀. 分组之后,假设现在是做B的后缀.前面的串能和当前的B后缀产生的公共前缀必定是从前往后单调递增的 ...

  9. POJ 2217 (后缀数组+最长公共子串)

    题目链接: http://poj.org/problem?id=2217 题目大意: 求两个串的最长公共子串,注意子串是连续的,而子序列可以不连续. 解题思路: 后缀数组解法是这类问题的模板解法. 对 ...

随机推荐

  1. mongodb 定时备份

    通过centos 脚步来执行备份操作,使用crontab实现定时功能,并删除指定天数前的备份 具体操作: 1.创建Mongodb数据库备份目录 mkdir -p /home/backup/mongod ...

  2. WebApi 方法的参数类型总结。

    1:[HttpGet]  ①:get方法之无参数. [HttpGet] public IHttpActionResult GetStudentInfor() { List<StudentMode ...

  3. 策略模式(Stratety)

    namespace StrategyPattern //策略模式 { /// <summary> /// 定义所以支持的算法的公共接口 /// </summary> abstr ...

  4. PHP之this和self

    self在对象中自己调用自己使用 $this在实例化后使用$this方法 在访问PHP类中的成员变量或方法时,如果被引用的变量或者方法被声明成const(定义常量)或者static(声明静态),那么就 ...

  5. 第1章 什么是TCP-IP

    第1章 什么是TCP-IP 什么是网络 网络是计算机或类似计算机的设备之间通过常用传输介质进行通信的集合.通常情况下,传输介质是绝缘的金属导线, 它用来在计算机之间携带电脉冲,介质也可以是电话线,甚至 ...

  6. MySQL binlog 日志

    一:MySQL 日志的三种类型: statement.row.mix 格式.推荐使用row格式. 怎么设置自己的日志格式呢? 1. set globle binlog_format='MIXED' 2 ...

  7. Spring知识点回顾(02)AOP

    一.注解拦截 二.方法规则拦截

  8. .NET CORE 框架ABP的代码生成器(ABP Code Power Tools )使用说明文档

    前言 各位好,又是一个多月没更新文章了. 原因嘛,大家都懂的,太忙了~ 临近年末,公司的项目.年会的做技术支持,同事朋友聚餐也比较频繁. 当然视频教程也没有继续更新.我的锅~ 但是这个月好歹抽空做了一 ...

  9. log4j将日志文件输出到相对路径

    建议直接使用jvm中定义的变量或者操作系统的环境变量. log4j.appender.logfile.File=${user.dir}/logs/app.log,使用tomcat容器时${user.d ...

  10. python github

    git 1. 版本控制 是否依稀记得你的毕业论文? 1 2 3 4 5 6 7 8 9 10 11 毕业论文_初稿.doc 毕业论文_修改1.doc 毕业论文_修改2.doc 毕业论文_修改3.doc ...