题目描述

给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点坐标

输入输出格式

输入格式:

第一行为一个整数n(3<=n<=50000),从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法

输出格式:

第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位),接下来4行每行表示一个顶点坐标,要求第一行为y坐标最小的顶点,其后按逆时针输出顶点坐标.如果用相同y坐标,先输出最小x坐标的顶点

输入输出样例

输入样例#1: 复制

6 
1.0 3.00000
1 4.00000
2.0000 1
3 0.0000
3.00000 6
6.0 3.0
输出样例#1: 复制

18.00000
3.00000 0.00000
6.00000 3.00000
3.00000 6.00000
0.00000 3.00000
最小的覆盖矩形肯定有边在凸包上
先求出凸包,然后枚举凸包上的边为直线构造矩形
用单调栈求出离该直线最远的点,左边最远的点和右边最远的点
就可以算出矩形的四个点
有可能输出-0.0000,所以要特判
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long double ld;
struct point
{
ld x,y;
}p[],s[];
point ansp[];
ld eps=1e-,res,ans;
int n,top;
ld cross(point a,point b)
{
return a.x*b.y-b.x*a.y;
}
point operator *(point a,double b)
{
return (point){a.x*b,a.y*b};
}
point operator -(point a,point b)
{
return (point){a.x-b.x,a.y-b.y};
}
point operator +(point a,point b)
{
return (point){a.x+b.x,a.y+b.y};
}
ld dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
ld dist(point a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
int dcmp(ld x)
{
if (x<-eps) return -;
if (x>eps) return ;
return ;
}
bool cmp(point a,point b)
{
return (a.y<b.y)||(a.y==b.y&&a.x<b.x);
}
bool cmp2(point a,point b)
{
int t=dcmp(cross((p[]-a),(p[]-b)));
if (t==) return dist(p[]-a)<dist(p[]-b);
return t>;
}
bool cmp3(point a,point b)
{
return atan2(a.y-ansp[].y,a.x-ansp[].x)<atan2(b.y-ansp[].y,b.x-ansp[].x);
}
void graham()
{int i;
sort(p+,p+n+,cmp);
sort(p+,p+n+,cmp2);
s[++top]=p[];s[++top]=p[];
for (i=;i<=n;i++)
{
while (top>&&dcmp(cross((p[i]-s[top-]),(s[top]-s[top-])))>=) top--;
s[++top]=p[i];
}
}
void solve()
{int i;
int pos=,r=,l;
s[top+]=s[];
for (i=;i<=top;i++)
{
ld D=dist(s[i+]-s[i]);
while (dcmp(cross((s[i+]-s[i]),(s[pos+]-s[i]))-cross((s[i+]-s[i]),(s[pos]-s[i])))>) pos=pos%top+;
while (dcmp(dot(s[i+]-s[i],s[r+]-s[i])-dot(s[i+]-s[i],s[r]-s[i]))>=) r=r%top+;
if (i==) l=r;
while (dcmp(dot(s[i+]-s[i],s[l+]-s[i])-dot(s[i+]-s[i],s[l]-s[i]))<=) l=l%top+;
ld L=dot(s[l]-s[i],s[i+]-s[i])/D;
ld R=dot(s[i+]-s[i],s[r]-s[i])/D;
ld H=cross((s[i+]-s[i]),(s[pos]-s[i]))/D;
res=(R-L)*H;if (res<) res=-res;
if (dcmp(res-ans)<)
{
ans=res;
ansp[]=s[i]+(s[i+]-s[i])*(L/D);
ansp[]=s[i]+(s[i+]-s[i])*(R/D);
ansp[]=ansp[]+(s[l]-ansp[])*(H/dist(s[l]-ansp[]));
ansp[]=ansp[]+(s[r]-ansp[])*(H/dist(s[r]-ansp[]));
if (dcmp(ansp[].x)==) ansp[].x=fabs(ansp[].x);
if (dcmp(ansp[].y)==) ansp[].y=fabs(ansp[].y);
if (dcmp(ansp[].x)==) ansp[].x=fabs(ansp[].x);
if (dcmp(ansp[].y)==) ansp[].y=fabs(ansp[].y);
if (dcmp(ansp[].x)==) ansp[].x=fabs(ansp[].x);
if (dcmp(ansp[].y)==) ansp[].y=fabs(ansp[].y);
if (dcmp(ansp[].x)==) ansp[].x=fabs(ansp[].x);
if (dcmp(ansp[].y)==) ansp[].y=fabs(ansp[].y);
}
}
}
int main()
{int i;
cin>>n;
ans=2e9;
for (i=;i<=n;i++)
{
scanf("%Lf%Lf",&p[i].x,&p[i].y);
}
graham();
solve();
printf("%.5Lf\n",ans);
sort(ansp+,ansp+,cmp);
sort(ansp+,ansp+,cmp3);
for (i=;i<=;i++)
printf("%.5Lf %.5Lf\n",ansp[i].x,ansp[i].y);
}

[HNOI2007]最小矩形覆盖的更多相关文章

  1. 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solve ...

  2. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  3. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  4. 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)

    [BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...

  5. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  6. 1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1426  Solve ...

  7. BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)

    BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...

  8. 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)

    题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...

  9. LG3187 [HNOI2007]最小矩形覆盖

    题意 题目描述 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点坐标 输入输出格式 输入格式: 第一行为一个整数n(3<=n<=50000),从第2至第 ...

  10. bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳

    题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注 ...

随机推荐

  1. servlet本质

    首先我们先要知道servlet是什么,这有两种解释.一是目前大多数人所说的,一个实现了servlet接口的类就可以叫作servlet.二,servlet只是一个接口.那么看起来这两点都和servlet ...

  2. beta冲刺5

    昨天的问题: 登陆页面的整合重新制作 各主机版本更迭 我的社团显示功能修改调整 主页的头部替换掉 +修复帖子无法显示内容的问题 +试着将邮箱等判定用正则表达式进行实时判定. 今天的完成: 主要是线下进 ...

  3. C语言第二次博客作业---分支结构 陈张鑫

    一.PTA实验作业 题目1:计算分段函数[2] 本题目要求计算下列分段函数f(x)的值: 1.实验代码 int main(){double x,y; scanf("%lf",&am ...

  4. 2017-2018-1 Java演绎法 第二周 作业

    团队任务:讨论Android上的游戏软件 参考现代软件工程 第一章 [概论]练习与讨论: 软件有很多种,也有各种分类办法,本次团队任务是讨论选取Android上的一个游戏软件,考虑到每位组员接触的游戏 ...

  5. 2017-2018-1 20155215 第九周 加分项 PWD命令的实现

    1 学习pwd命令 Linux中用 pwd 命令来查看"当前工作目录"的完整路径. 简单得说,每当你在终端进行操作时,你都会有一个当前工作目录. 在不太确定当前位置时,就会使用pw ...

  6. Alpha冲刺No.5

    一.站立式会议 在助教帮助下,优先解决404的问题,将demo移植到自己项目上. 进一步制作界面. 将已做好的内容,移植到手机做部分测试,能够在同一路由子网内登录数据库. 二.实际项目进展 已经解决了 ...

  7. scrapy 模拟登陆

    import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...

  8. python 操作SQLAlchemy

    SQLAlchemy python链接 pymysql mysql+pymysql://<username>:<password>@<host>/<dbnam ...

  9. C# Unity游戏开发——Excel中的数据是如何到游戏中的 (四)2018.4.3更新

    本帖是延续的:C# Unity游戏开发--Excel中的数据是如何到游戏中的 (三) 最近项目不算太忙,终于有时间更新博客了.关于数据处理这个主题前面的(一)(二)(三)基本上算是一个完整的静态数据处 ...

  10. 自己动手写CPU(基于FPGA与Verilog)

    大三上学期开展了数字系统设计的课程,下学期便要求自己写一个单周期CPU和一个多周期CPU,既然要学,就记录一下学习的过程. CPU--中央处理器,顾名思义,是计算机中最重要的一部分,功能就是周而复始地 ...