来自FallDream的博客,未经允许,请勿转载,谢谢。


老 C 是个程序员。    
作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种神奇力量的驱使之下跑得非常快。小 Q 也是一个程序员。有一天他悄悄潜入了老 C 的家中,想要看看这个键盘究竟有何妙处。他发现,这个键盘共有n个按键,这n个按键虽然整齐的排成一列,但是每个键的高度却互不相同。聪明的小 Q 马上将每个键的高度用 1 ~ n 的整数表示了出来,得到一个 1 ~ n 的排列 h1, h2,..., hn 。为了回去之后可以仿造一个新键盘(新键盘每个键的高度也是一个 1 ~ n 的排列),又不要和老 C 的键盘完全一样,小 Q决定记录下若干对按键的高度关系。作为一个程序员,小 Q 当然不会随便选几对就记下来,而是选了非常有规律的一些按键对:对于 i =2,3, ... , n,小 Q 都记录下了一个字符<或者>,表示 h_[i/2] < h_i 或者h _[i/2] > h_i 。于是,小 Q 得到了一个长度为n ? 1的字符串,开开心心的回家了。现在,小 Q 想知道满足他所记录的高度关系的键盘有多少个。虽然小 Q 不希望自己的键盘和老 C 的完全相同,但是完全相同也算一个满足要求的键盘。答案可能很大,你只需要告诉小 Q 答案 mod 1,000,000,007 之后的结果即可。
 
用f[i][j]表示i的子树内第i个点排名第j的方案数,然后枚举子树合并。
合并的时候,枚举这个子树内多少个插到i前面,剩下的插到后面,并用两个组合数统计一下这样转移的系数即可。
复杂度看似是n^3  实际上貌似是n^2logn
#include<iostream>
#include<cstdio>
#define MN 1000
#define mod 1000000007
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} struct edge{int to,next;}e[MN+];
int n,cnt=,head[MN+],f[MN+][MN+],g[MN+][MN+],size[MN+],p[MN+],inv[MN+],t[MN+][MN+];
char st[MN+];
inline void ins(int f,int t){e[++cnt]=(edge){t,head[f]};head[f]=cnt;}
inline int C(int n,int m){return 1LL*p[n]*inv[m]%mod*inv[n-m]%mod;}
void Solve(int x)
{
size[x]=;f[x][]=;
if((x<<)<=n) ins(x,x<<);
if((x<<|)<=n) ins(x,x<<|);
for(int i=head[x];i;i=e[i].next)
{
Solve(e[i].to);size[x]+=size[e[i].to];
for(int j=;j<=size[x];++j)
for(int k=;k<j;++k)
if(st[e[i].to]=='>')
t[x][j]=(t[x][j]+1LL*C(j-,k)*C(size[x]-j,size[e[i].to]-k)%mod*f[e[i].to][k]%mod*f[x][j-k])%mod;
else
t[x][j]=(t[x][j]+1LL*C(j-,k)*C(size[x]-j,size[e[i].to]-k)%mod*g[e[i].to][k+]%mod*f[x][j-k])%mod;
for(int j=;j<=size[x];++j) f[x][j]=t[x][j],t[x][j]=;
}
for(int i=size[x];i;--i) g[x][i]=(g[x][i+]+f[x][i])%mod;
for(int i=;i<=size[x];++i) (f[x][i]+=f[x][i-])%=mod;
} int main()
{
n=read();scanf("%s",st+);
p[]=p[]=inv[]=inv[]=;
for(int i=;i<=n;++i) p[i]=1LL*p[i-]*i%mod,inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=n;++i) inv[i]=1LL*inv[i]*inv[i-]%mod;
Solve();
printf("%d\n",f[][size[]]);
return ;
}

[bzoj4824][Cqoi2017]老C的键盘的更多相关文章

  1. [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 218  Solved: 171[Submit][Statu ...

  2. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

  3. BZOJ4824 [Cqoi2017]老C的键盘 【树形dp】

    题目链接 BZOJ4824 题解 观察出题目中的关系实际上是完全二叉树的父子关系 我们设\(f[i][j]\)为以\(i\)为根的节点在其子树中排名为\(j\)的方案数 转移时,枚举左右子树分别有几个 ...

  4. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  5. [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘

    Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...

  6. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

  7. Luogu P3757 [CQOI2017]老C的键盘

    题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...

  8. BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)

    前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...

  9. bzoj 4824: [Cqoi2017]老C的键盘【树形dp】

    参考:https://www.cnblogs.com/FallDream/p/bzoj4824.html 画一画就会发现关系形成了一棵二叉树(其实看到n-1就能想到 然后dp,设f[i][j]为点i在 ...

随机推荐

  1. centos 安装配置 mysql

    安装环境:CentOS7 64位 MINI版,安装MySQL5.7 1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:http://dev.mysql.com/downloads/repo ...

  2. java 注解的实现机制

    一.什么是注解: 注解是标记,也可以理解成是一种应用在类.方法.参数.属性.构造器上的特殊修饰符.注解作用有以下三种: 第一种:生成文档,常用的有@param@return等. 第二种:替代配置文件的 ...

  3. 【learning】多项式相关(求逆、开根、除法、取模)

    (首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里 ...

  4. 详解k8s一个完整的监控方案(Heapster+Grafana+InfluxDB) - kubernetes

    1.浅析整个监控流程 heapster以k8s内置的cAdvisor作为数据源收集集群信息,并汇总出有价值的性能数据(Metrics):cpu.内存.网络流量等,然后将这些数据输出到外部存储,如Inf ...

  5. 快速搭建fabric-v1.1.0的chaincode开发环境

    本文参考了fabric官方文档:http://hyperledger-fabric.readthedocs.io/en/latest/peer-chaincode-devmode.html?highl ...

  6. build.gradle & gradle.properties

    一.build.gradle buildscript { ext { springBootVersion = '1.5.9.RELEASE' } repositories { maven { cred ...

  7. XML之XPath

    1.在 XPath 中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档节点(或称为根节点). 1.1 XPath 术语 节点(Node) 在 XPath 中,有七种类型的节点:元 ...

  8. 【原生js实现一键回到顶部】

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  9. SQL 中的日期和时间类型

    在我们SQL中一般支持三种数据类型. date:日历日期,包括年(四位),月和日. time: 一天中的时间,包括小时,分和秒.可以用变量time(p)来表示秒的小数点后的数字位数(默认是0). 通过 ...

  10. Python第三方库的安装方法总结

    源码安装 很多第三方库都是开源的,几乎都可以在github 或者 pypi上找到源码.找到源码格式大概都是 zip . tar.zip. tar.bz2格式的压缩包.解压这些包,进入解压好的文件夹,通 ...