平面图转对偶图(Bzoj1001:狼抓兔子)
如果只会用最小割做这道题那就太菜辣
引入
来自某学长
平面图:在平面上边不相交的图(边可以绕着画)
那么平面图的边与边就围成了许多个区域(这与你画图的方式有关)
定义对偶图:把相邻的两个区域连上边,形成的图
两个可能正确的东西:
- 对偶图\(\in\)平面图
- 平面图的对偶图的对偶图是它自己
知道这些再来写这道题就够了
Sol
题目给了一个确定的平面图
考虑在起点处和终点处以它为起点画一条斜射线,把平面分成左下和右上两个部分,分别定义为\(S\)和\(T\)
然后建立对偶图边权就是跨过的平面图的边权(\(S\)和\(T\)不直接相连),求一遍\(S\)到\(T\)的最短路即可
理解:一条\(S\)到\(T\)的路径把这个平面图的起点和终点隔开,那么最短路就是最小割
建图比较恶心
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(6e6 + 5);
IL ll Input(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, fst[_], nxt[_], w[_], to[_], cnt, dis[_], S, T, vis[_], id[1005][1005], num;
queue <int> Q;
IL void Add(RG int u, RG int v, RG int ww){
nxt[cnt] = fst[u]; to[cnt] = v; w[cnt] = ww; fst[u] = cnt++;
}
IL int SPFA(){
Fill(dis, 127); dis[S] = 0;
vis[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e])
if(dis[u] + w[e] < dis[to[e]]){
dis[to[e]] = dis[u] + w[e];
if(!vis[to[e]]) vis[to[e]] = 1, Q.push(to[e]);
}
vis[u] = 0;
}
return dis[T];
}
int main(RG int argc, RG char* argv[]){
Fill(fst, -1); n = Input(); m = Input();
for(RG int i = 1, r = (n - 1) * 2; i <= r; ++i)
for(RG int j = 1; j < m; ++j)
id[i][j] = ++num;
T = num + 1;
for(RG int i = 1, I = 1; i <= n; ++i, I += 2)
for(RG int j = 1; j < m; ++j){
RG int v = Input(), id1 = S, id2 = T;
if(i != 1) id2 = id[I - 1][j];
if(i != n) id1 = id[I][j];
Add(id1, id2, v); Add(id2, id1, v);
}
for(RG int i = 1, I = 1; i < n; ++i, I += 2)
for(RG int j = 1; j <= m; ++j){
RG int v = Input(), id1 = S, id2 = T;
if(j != 1) id1 = id[I][j - 1];
if(j != m) id2 = id[I + 1][j];
Add(id1, id2, v); Add(id2, id1, v);
}
for(RG int i = 1, I = 1; i < n; ++i, I += 2)
for(RG int j = 1; j < m; ++j){
RG int v = Input(), id1 = id[I][j], id2 = id[I + 1][j];
Add(id1, id2, v); Add(id2, id1, v);
}
printf("%d\n", SPFA());
return 0;
}
平面图转对偶图(Bzoj1001:狼抓兔子)的更多相关文章
- bzoj1001狼抓兔子 对偶图优化
bzoj1001狼抓兔子 对偶图优化 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路 菜鸡总是要填坑的! 很明显让你求网格图的最 ...
- BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...
- bzoj1001狼抓兔子
1001: [BeiJing2006]狼抓兔子 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你 ...
- BZOJ1001:狼抓兔子(最小割最大流+vector模板)
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...
- BZOJ1001 狼抓兔子 平面图转对偶图 最小割
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为 ...
- BZOJ1001 狼抓兔子(裸网络流)
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
- 【建图+最短路】Bzoj1001 狼抓兔子
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...
- BZOJ1001 狼抓兔子(网络流转最短路:对偶图)
题意: 给一个如图形式的\(n*m\)的方格,从左上走到右下,给出边权,问分成两块所需的最小代价.\(n,m\leq1000\). 思路: 显然是个最小割,但是\(O(n^2m)\)的复杂度很高,虽然 ...
- 最大流最小割——bzoj1001狼抓兔子,洛谷P2598
前置知识 平面图 平面图就是平面上任意边都不相交的图.(自己瞎画的不算XD) 对偶图 比如说这个图,我们发现平面图肯定会把平面分成不同的区域(感觉像拓扑图),并把这些区域当做每个点(不被包围的区域独自 ...
- [日常摸鱼]bzoj1001狼抓兔子-最大流最小割
题意就是求最小割- 然后我们有这么一个定理(最大流-最小割定理 ): 任何一个网络图的最小割中边的容量之和等于图的最大流. (下面直接简称为最大流和最小割) 证明: 如果最大流>最小割,那把这些 ...
随机推荐
- IDEA的优质使用博客资源
intelliJ idea 使用技巧&方法 IntelliJ IDEA 常用设置讲解 IntelliJ IDEA 详细图解最常用的配置 ,适合刚刚用的新人. IntelliJ IDEA 常见文 ...
- PHP 批量获取指定目录下的文件列表(递归,穿透所有子目录)
//调用 $dir = '/Users/xxx/www'; $exceptFolders = array('view','test'); $exceptFiles = array('BaseContr ...
- Java经典编程题50道之十一
有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? public class Example11 { public static void main(String[] arg ...
- HBuilder常用快捷键
切换tab: Ctrl+Tab全部保存: Ctrl+Shift+S 激活代码助手: Alt+/显示方法参数提示: Alt+Shift+?转到定义: Ctrl+Alt+D 开启关闭注释整行: Ctrl+ ...
- Hibernate 一对一中的一些问题
1.对于想查询一对一种一方为空的时候使用 例如一个用户对应一个人,则要从人查找没有用户的人员的话, 使用hql语句是查询不到的 我今天也碰到了这个问题,研究了下,可以用以下语句查出来:from Per ...
- hdu 2044 递推
到达第n个格子的方案数等于第n-1个格子的方案数加上第n-2个格子的方案数. d[i]=d[i-1]+d[i-2]; AC代码: #include<cstdio> const int ma ...
- 【SSH框架】系列之 Spring 整合 Hibernate 框架
1.SSH 三大框架整合原理 Spring 与 Struts2 的整合就是将 Action 对象交给 Spring 容器来负责创建. Spring 与 Hibernate 的整合就是将 Session ...
- 腾讯云+校园扶持计划是bug还是福利
前言 上午突然收到好友的微信消息.打开一看是关于关腾讯云"云+校园扶持计划".仔细看下了意思就是用户可以花360大洋购买腾讯云服务器配置为1核2G,1M带宽的服务器3年.(腾讯 ...
- Android 网络之 Volley+OkHttp+Https
Volley 已经发布很长时间了, 也已被广泛应用, 相关教程到处都是. 本文只说两个值得注意的地方. 本文讲解部分比较少, 请参阅提供的相关链接. 完整的实现代码在 Github dodocat/A ...
- vxworks下文件读写示例
dev 1.create file on floopy disk and write contents: -> pdev=fdDevCreate(0,0,0,0) /* A:,1.44M ...