[BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
HINT
Source
Solution
设$f[i]$表示前$i$个物品装箱所需最小花费。
假设我们把$[j+1,i]$的物品装到一个箱子里,那么很容易得出dp方程:
$f[i]=min\{f[j]+(i-j+(\sum_{k=j+1}^{i}c[k])-L)^{2}\}$
现在要把这个$O(n^{2})$优化成$O(n)$:
设$d[i]=d[i-1]+c[i]+1$,$P=L+1$,那么
$f[i]=min\{f[j]+(d[i]-d[j]-P)^{2}\}$
假设k<j<i,且j比k优,则:
$f[j]+(d[i]-d[j]-P)^{2}<f[k]+(d[i]-d[k]-P)^{2}$
化简后的结果是:
$\frac{(f[j]+d[j]^{2})-(f[k]+d[k]^{2})}{d[j]-d[k]}<2*(d[i]-P)$
将$f[j]+d[j]^{2}$看成$y_{j}$,将$d[j]$看成$x_{j}$,就变成了斜率的表达式。
维护一个下凸壳($min$就是下凸壳,$max$就是上凸壳),找凸包上关于斜率$2*(d[i]-P)$的切点,该店就是决策点。
说右凸壳的都给我狗带!狗带!!!
由于满足决策单调性,所以决策$j$是单调不下降的,我们可以把多余的斜率删掉。
#include <bits/stdc++.h>
using namespace std;
long long f[], c[];
int q[]; double pow(long long x)
{
return 1.0 * x * x;
} double slope(int x)
{
return (f[q[x]] + pow(c[q[x]]) - f[q[x - ]] - pow(c[q[x - ]])) / (c[q[x]] - c[q[x - ]]);
} int main()
{
int n, l, front = , back;
cin >> n >> l;
for(int i = ; i <= n; ++i)
{
cin >> c[i];
c[i] += c[i - ] + ;
}
++l;
q[back = ] = ;
for(int i = ; i <= n; ++i)
{
while(front + < back && slope(front + ) <= * (c[i] - l))
++front;
int j = q[front + ];
f[i] = f[j] + (long long)pow(c[i] - c[j] - l);
q[++back] = i;
while(front + < back && slope(back - ) >= slope(back))
q[--back] = i;
}
cout << f[n] << endl;
return ;
}
[BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)的更多相关文章
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
随机推荐
- CSS布局(一) 盒子模型
一.盒子模型 标准盒子模型 从下图可以看到标准 w3c 盒子模型的范围包括 content.padding.border.margin,并且 content 部分不包含其他部分. 怪异盒子模型 从下图 ...
- 5. 跟踪标记 (Trace Flag) 834, 845 对内存页行为的影响
跟踪标记:834 功能: 在64位的windows环境下,为SQL Server开启这个跟踪标记,那么SQL Server 会使用大页(Large pages)为内存缓冲区(buffer pool)分 ...
- vue子组件向父组件传值
vue2.0中通过$emit事件在子组件中自定义事件,通过操作子组件中的事件,向父组件传递参数: 首先写一个叫做parentComp.vue的父组件: <template> <div ...
- Spring boot 整合redis单机版
一.安装redis 这个不多说,网上有各种系统安装redis的操作, redis安装 二.创建sprigboot项目 这个也不多说,不会的前面有相关教程. 三.添加maven坐标 四.编写spr ...
- XP环境下的网络证书问题
项目过程中,由于是收银系统需要从服务器获取支付二维码,会产生SSL连接的问题,在win7.win10上都没有问题,放到WIN XP上出现了The underlying connection was c ...
- Android预定义样式
字体大小 对于能够显示文字的控件(如TextView EditText RadioButton Button CheckBox Chronometer等等),你有时需要控制字体的大小.Android平 ...
- 1×1卷积的用途(Network in Network)
1×1卷积,又称为Network in Network 如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系. 但卷积的输出输入是长方体,所以1x1卷 ...
- Java三大特性(封装,继承,多态)
Java中有三大特性,分别是封装继承多态,其理念十分抽象,并且是层层深入式的. 一.封装 概念:封装,即隐藏对象的属性和实现细节,仅对外公开接口,控制在程序中属性的读和修改的访问级别:将抽象得到的数据 ...
- nyoj222 整数中的1 数位DP
从a枚举到b是一定会超时的.此题应该考虑数位dp,也可以理解为递推,假设给定数n,就能在O(32)复杂度算出所有小于等于n的数中1出现的次数,那么给定区间[a, b],solve(b) - solve ...
- 浅谈CDN、SEO、XSS、CSRF
CDN 什么是CDN 初学Web开发的时候,多多少少都会听过这个名词->CDN. CDN在我没接触之前,它给我的印象是用来优化网络请求的,我第一次用到CDN的时候是在找JS文件时.当时找不到相对 ...