【CF865C】Gotta Go Fast

题意:有n个关卡需要依次通过,第i关有pi的概率要花ai时间通过,有1-pi的概率要花bi时间通过,你的目标是花费不超过m的时间通关,每一关开始时你都可以选择进行这个关卡或是重新开始。问你达成目标的最短期望总时间(假设你是绝顶聪明的)。

n<=50,m<=5000。

题解:设f[i][j]表示已经完成了前i关,用了j的时间,期望的通关最小总时间。那么每一关开始时你都可以选择打或不打,所以得到DP方程:

f[i-1][j]=min(f[0][0],(f[j+ai]+ai)*pi+(f[j+bi]+bi)*(1-pi))

但是问题来了,我们现在还不知道f[0][0]的值,怎么办?

我们可以二分!容易发现,当我们假定的f[0][0]比真正值大时,算出来的f[0][0]要比假定值小,反之比假定值大。这个原理感觉和分数规划的思想差不多。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
double f[55][5110];
int n,m;
int a[55],b[55];
double p[55];
bool check(double mid)
{
int i,j;
for(i=0;i<=n;i++) for(j=0;j<=m+100;j++) f[i][j]=mid;
for(j=0;j<=m;j++) f[n][j]=0;
for(i=n;i>=1;i--)
{
for(j=0;j<=m;j++)
{
f[i-1][j]=min(mid,(f[i][j+a[i]]+a[i])*p[i]+(f[i][j+b[i]]+b[i])*(1-p[i]));
}
}
return f[0][0]<mid;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i;
double l=0,r=34751706,mid;
for(i=1;i<=n;i++) a[i]=rd(),b[i]=rd(),p[i]=rd()*0.01;
for(i=1;i<=60;i++)
{
mid=(l+r)/2;
if(check(mid)) r=mid;
else l=mid;
}
printf("%.9f",r);
return 0;
}

【CF865C】Gotta Go Fast 二分+期望DP的更多相关文章

  1. Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)

    第一次看到这种骚东西, 期望还能二分的啊??? 因为存在重置的操作, 所以我们再dp的过程中有环存在. 为了消除环的影响, 我们二分dp[ 0 ][ 0 ]的值, 与通过dp得出的dp[ 0 ][ 0 ...

  2. #3 Codeforces-865C Gotta Go Fast(期望dp)

    题意:一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每通过一关后可以选择继续下一关或者时间清0并从第一关开始,先要求通过所有关卡的时间和不 ...

  3. [CF865C]Gotta Go Fast

    题目大意: 一个游戏关卡有$n(n\le50)$个任务,若在$m$秒内按顺序完成所有任务则算作通过当前关卡.每个关卡有三个属性$a_i,b_i,p_i(1\le a_i<b_i\le100,80 ...

  4. [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)

    [Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...

  5. [计蒜客] 矿石采集【记搜、Tarjan缩点+期望Dp】

    Online Judge:计蒜客信息学3月提高组模拟赛 Label:记搜,TarJan缩点,树状数组,期望Dp 题解 整个题目由毫无关联的两个问题组合成: part1 问题:对于每个询问的起点终点,求 ...

  6. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  7. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  8. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  9. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

随机推荐

  1. 【ES】简单使用

    import sys reload(sys) sys.setdefaultencoding('utf-8') from datetime import datetime from elasticsea ...

  2. 深入理解Java虚拟机(一)

    一.运行时数据区域 ​ 1.程序计数器: 当前线程执行字节码的行号指示器(通过改变计数器的值来选择下条需要执行的字节码指令) 每个线程有独立的程序计数器(线程私有,为了切换线程时能恢复到挣钱的执行位置 ...

  3. geoserver入门

    1.什么是Universal Transverse Mercator system 翻译名叫做通用横轴魔卡托系统,通常称为UTM.这个投影系从中心子午线把世界分成一系列6度的纵向宽区域. 2.什么是w ...

  4. 织梦Dedecms系统可疑文件include/filter.inc.php扫描出漏洞,该如何解决?

    今天在做网站监察的时候,发现网站出了一个问题,在对网站做木马监测的时候,扫描出一个可疑文件:/include/filter.inc.php,建议删除,但仔细检查后,发现此文件是织梦(Dedecms)系 ...

  5. js合并.css合并工具

    http://www.neoease.com/css-javascript-combo-tool/ http://www.neoease.com/minimize-javascript-files-u ...

  6. CentOS 7 mini安装后安装图形界面及远程设置

    安装图形界面 yum group install "GNOME Desktop" "Graphical Administration Tools" 安装 xrd ...

  7. SpringMVC由浅入深day01_3非注解的处理器映射器和适配器

     3 非注解的处理器映射器和适配器 3.1 非注解的处理器映射器 3.1.1 HandlerMapping处理器映射器 HandlerMapping 负责根据request请求找到对应的Handler ...

  8. Top 20 NuGet packages for captcha

    Top 20 NuGet packages for captcha CaptchaMvc.Mvc4 CaptchaMvc will implement your web MVC application ...

  9. proxy chains 试用

    我的机子是通过一台windows机器上的CCProxy代理上网.可是在设置了系统代理以后,发现在终端下若要进行ftp或者ssh等操作,并不能使用代理(但是wget是可以的). 期间试过一些方法,比如在 ...

  10. popupWindow 在指定位置上的显示

    先看效果图,免得浪费大家时间,看是不是想要的效果 . 直接上代码 ,核心方法. private void showPopupWindow(View parent) { if (popupWindow  ...