numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)[source]

Estimate a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, , then the covariance matrix element  is the covariance of  and . The element  is the variance of .

See the notes for an outline of the algorithm.

Parameters:

m : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row (行) of m represents a variable(变量), and each column(列) a single observation of all those variables(样本). Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same form as that of m.

rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N - 1), where N is the number of observations given (unbiased estimate). If bias is True, then normalization is by N. These values can be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof : int, optional

If not None the default value implied by bias is overridden. Note that ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified, and ddof=0 will return the simple average. See the notes for the details. The default value is None.

New in version 1.5.

fweights : array_like, int, optional

1-D array of integer freguency weights; the number of times each observation vector should be repeated.

New in version 1.10.

aweights : array_like, optional

1-D array of observation vector weights. These relative weights are typically large for observations considered “important” and smaller for observations considered less “important”. If ddof=0 the array of weights can be used to assign probabilities to observation vectors.

New in version 1.10.

Returns:

out : ndarray

The covariance matrix of the variables.

See also

corrcoef
Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a = aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 / (np.sum(f) - ddof) as it should.

Examples

Consider two variables,  and , which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
[2, 1, 0]])

Note how  increases while  decreases. The covariance matrix shows this clearly:

>>> np.cov(x)
array([[ 1., -1.],
[-1., 1.]])

Note that element , which shows the correlation between  and , is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1,  4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.stack((x, y), axis=0)
>>> print(np.cov(X))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x, y))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x))
11.71

总结

理解协方差矩阵的关键就在于牢记它的计算是不同维度之间的协方差,而不是不同样本之间。拿到一个样本矩阵,最先要明确的就是一行是一个样本还是一个维度,心中明确整个计算过程就会顺流而下,这么一来就不会迷茫了。

numpy协方差矩阵numpy.cov的更多相关文章

  1. numpy入门—numpy是什么

    numpy是什么?为什么使用numpy 使用numpy库与原生python用于数组计算性能对比

  2. Python的 numpy中 numpy.ravel() 和numpy.flatten()的区别和使用

    两者所要实现的功能是一致的(将多维数组降为一维), 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten() 返回一份拷贝,对拷贝所做的修改不会影响(reflects ...

  3. Python 关于数组矩阵变换函数numpy.nonzero(),numpy.multiply()用法

    1.numpy.nonzero(condition),返回参数condition(为数组或者矩阵)中非0元素的索引所形成的ndarray数组,同时也可以返回condition中布尔值为True的值索引 ...

  4. numpy.ravel()/numpy.flatten()/numpy.squeeze()

    numpy.ravel(a, order='C') Return a flattened array numpy.chararray.flatten(order='C') Return a copy ...

  5. 【numpy】新版本中numpy(numpy>1.17.0)中的random模块

    numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...

  6. NumPy之:NumPy简介教程

    目录 简介 安装NumPy Array和List 创建Array Array操作 sort concatenate 统计信息 reshape 增加维度 index和切片 从现有数据中创建Array 算 ...

  7. numpy入门—Numpy的核心array对象以及创建array的方法

    Numpy的核心array对象以及创建array的方法 array对象的背景: Numpy的核心数据结构,就叫做array就是数组,array对象可以是一维数组,也可以是多维数组: Python的Li ...

  8. 使用numpy实现批量梯度下降的感知机模型

    生成多维高斯分布随机样本 生成多维高斯分布所需要的均值向量和方差矩阵 这里使用numpy中的多变量正太分布随机样本生成函数,按照要求设置均值向量和协方差矩阵.以下设置两个辅助函数,用于指定随机变量维度 ...

  9. python(5):scipy之numpy介绍

    python 的scipy 下面的三大库: numpy, matplotlib, pandas scipy 下面还有linalg 等 scipy 中的数据结构主要有三种: ndarray(n维数组), ...

随机推荐

  1. 使用a标签制作tooltips

    摘要: 前面已经分享了三种方法制作tooltips,今天再来分享一个借助a标签来实现tooltips的方法. 效果如下:

  2. MS Chart Control 學習手記(二) - 圓餅圖

    using System.Web.UI.DataVisualization.Charting; 02 using System.Drawing; 03   04 namespace Chart.AJA ...

  3. TIMEOUT HANDLING WITH HTTPCLIENT

    https://www.thomaslevesque.com/2018/02/25/better-timeout-handling-with-httpclient/ The problem If yo ...

  4. SSL证书/TLS证书是什么

    https://blog.csdn.net/donghaixiaolongwang/article/details/79193695 A. SSL协议与TLS是什么?它们的功能是什么? 答:SSL(S ...

  5. Linux+Redis实战教程_day03_1、Redis-LinkedList【重点】

    1.redis-LinkedList[重点] Java List : 数组ArrayList 链表LinkedList 为什么redis选取了链表? Redis操作中,最多的操作是进行元素的增删 使用 ...

  6. /usr/bin/ld: cannot find -lxxx 的解决办法

    /usr/bin/ld: cannot find -lxxx 的解决办法 在软件编译过程中,经常会碰到类似这样的编译错误: /usr/bin/ld: cannot find -lhdf5 这表示找不到 ...

  7. hydra 及相关示例

    http://www.cnblogs.com/mchina/archive/2013/01/01/2840815.html https://www.thc.org/thc-hydra/ 语法 # hy ...

  8. Python 管理 MySQL

    Python MySQLdb 模块 Python pymysql 模块 Python SQLAlchemy 模块 Python ConfigParser 模块 Python 创建 MySQL 配置文件 ...

  9. php危险的函数和类 disable_functions/class

    phpinfo()功能描述:输出 PHP 环境信息以及相关的模块.WEB 环境等信息.危险等级:中 passthru()功能描述:允许执行一个外部程序并回显输出,类似于 exec().危险等级:高 e ...

  10. UITableView+FDTemplateLayoutCell源码学习笔记

    本文转载至  http://www.cocoachina.com/bbs/read.php?tid=299773 基本原理是通过缓存每个cell的高度,当tableview回调delegate的hei ...