numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)[source]

Estimate a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, , then the covariance matrix element  is the covariance of  and . The element  is the variance of .

See the notes for an outline of the algorithm.

Parameters:

m : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row (行) of m represents a variable(变量), and each column(列) a single observation of all those variables(样本). Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same form as that of m.

rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N - 1), where N is the number of observations given (unbiased estimate). If bias is True, then normalization is by N. These values can be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof : int, optional

If not None the default value implied by bias is overridden. Note that ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified, and ddof=0 will return the simple average. See the notes for the details. The default value is None.

New in version 1.5.

fweights : array_like, int, optional

1-D array of integer freguency weights; the number of times each observation vector should be repeated.

New in version 1.10.

aweights : array_like, optional

1-D array of observation vector weights. These relative weights are typically large for observations considered “important” and smaller for observations considered less “important”. If ddof=0 the array of weights can be used to assign probabilities to observation vectors.

New in version 1.10.

Returns:

out : ndarray

The covariance matrix of the variables.

See also

corrcoef
Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a = aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 / (np.sum(f) - ddof) as it should.

Examples

Consider two variables,  and , which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
[2, 1, 0]])

Note how  increases while  decreases. The covariance matrix shows this clearly:

>>> np.cov(x)
array([[ 1., -1.],
[-1., 1.]])

Note that element , which shows the correlation between  and , is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1,  4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.stack((x, y), axis=0)
>>> print(np.cov(X))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x, y))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x))
11.71

总结

理解协方差矩阵的关键就在于牢记它的计算是不同维度之间的协方差,而不是不同样本之间。拿到一个样本矩阵,最先要明确的就是一行是一个样本还是一个维度,心中明确整个计算过程就会顺流而下,这么一来就不会迷茫了。

numpy协方差矩阵numpy.cov的更多相关文章

  1. numpy入门—numpy是什么

    numpy是什么?为什么使用numpy 使用numpy库与原生python用于数组计算性能对比

  2. Python的 numpy中 numpy.ravel() 和numpy.flatten()的区别和使用

    两者所要实现的功能是一致的(将多维数组降为一维), 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten() 返回一份拷贝,对拷贝所做的修改不会影响(reflects ...

  3. Python 关于数组矩阵变换函数numpy.nonzero(),numpy.multiply()用法

    1.numpy.nonzero(condition),返回参数condition(为数组或者矩阵)中非0元素的索引所形成的ndarray数组,同时也可以返回condition中布尔值为True的值索引 ...

  4. numpy.ravel()/numpy.flatten()/numpy.squeeze()

    numpy.ravel(a, order='C') Return a flattened array numpy.chararray.flatten(order='C') Return a copy ...

  5. 【numpy】新版本中numpy(numpy>1.17.0)中的random模块

    numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...

  6. NumPy之:NumPy简介教程

    目录 简介 安装NumPy Array和List 创建Array Array操作 sort concatenate 统计信息 reshape 增加维度 index和切片 从现有数据中创建Array 算 ...

  7. numpy入门—Numpy的核心array对象以及创建array的方法

    Numpy的核心array对象以及创建array的方法 array对象的背景: Numpy的核心数据结构,就叫做array就是数组,array对象可以是一维数组,也可以是多维数组: Python的Li ...

  8. 使用numpy实现批量梯度下降的感知机模型

    生成多维高斯分布随机样本 生成多维高斯分布所需要的均值向量和方差矩阵 这里使用numpy中的多变量正太分布随机样本生成函数,按照要求设置均值向量和协方差矩阵.以下设置两个辅助函数,用于指定随机变量维度 ...

  9. python(5):scipy之numpy介绍

    python 的scipy 下面的三大库: numpy, matplotlib, pandas scipy 下面还有linalg 等 scipy 中的数据结构主要有三种: ndarray(n维数组), ...

随机推荐

  1. 谁应该在CCB(变更控制委员会)中?

    In software development, a Change Control Board (CCB) or Software Change Control Board (SCCB) is a c ...

  2. ESPCN超分辨率汇总

    Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural ...

  3. 中企ITIL需软落地

    IT技术的发展对现代企业产生了深远的影响.企业信息化建设越深入,信息系统的规模越大,业务对IT系统的依赖性也越大,由此对IT服务的要求越高,如何 对繁多的IT技术进行有效的管理,最大程度地利用企业现有 ...

  4. [Err] 1231 - Variable 'sql_mode' can't be set to the value of 'NULL

    在MYSQL还原语句的时候,报: [Err] - Variable 'sql_mode' can't be set to the value of 'NULL 解决办法:打开SQL语句,把里面的注释给 ...

  5. YII创建应用

    创建第一个应用 打开cmd,切换到appserv的www目录下,输入: D:\AppServ\www>yii6\framework\yiic webapp D:wamp\www\mydemos

  6. python中,如何将多行进行输出,同时将行尾的换行符去掉

    需求说明: 比如我要输出字符串的常量,字符串常量要输出多行,该怎么解决呢 操作过程: 1.可以通过三引号(""" .... """)将要输出 ...

  7. Docker应用之镜像

    一.Docker包括三个基本概念 1.镜像(Image):Docker镜像是一个只读模板,例如一个镜像可以包含完整的Linux系统环境,里面仅仅安装了Apache或用户其他应用程序:镜像可以用来创建D ...

  8. 【代码审计】iCMS_v7.0.7 admincp.app.php页面存在SQL注入漏洞分析

      0x00 环境准备 iCMS官网:https://www.icmsdev.com 网站源码版本:iCMS-v7.0.7 程序源码下载:https://www.icmsdev.com/downloa ...

  9. Python 网络爬虫

    爬虫介绍 爬取图片 爬取文本 爬虫相关模块:re 爬虫相关模块:urllib 爬虫相关模块:urllib2 爬虫相关模块:cookielib 爬虫相关模块:requests 爬取需要登录的页面

  10. [Command] wc

    wc 命令可以打印目标文件的换行.单词和字节数.其中换行数 = 总行数 - 1,单词数则按照空格分隔的英文单词数进行统计,也就是说连续的汉字(短语.句子)都视作一个单词. NAME wc - 打印每个 ...