【python-opencv】18-图像梯度+图像边界

效果图:

*一阶导数与Soble算子


*二阶导数与拉普拉斯算子


定义:把图片想象成连续函数,因为边缘部分的像素值是与旁边像素明显有区别的,所以对图片局部求极值,就可以得到整幅图片的边缘信息了。
不过图片是二维的离散函数,图像梯度其实就是这个二维离散函数的求导。
Sobel算子是普通一阶差分,是基于寻找梯度强度。
拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。
Sobel算子效果图:

Scharr算子是Sobel的升级增强

import cv2 as cv
import numpy as np #sobel算子
def soble_demo(image):
cv.imshow('input_image', src)
grad_x = cv.Sobel(image,cv.CV_32F,dx=1,dy=0) #对x求一阶导
grad_y = cv.Sobel(image,cv.CV_32F,dx=0,dy=1) #对y求一阶导
# grad_x = cv.Scharr(image, cv.CV_32F, dx=1, dy=0) # 对x求一阶导,Scharr算子是Sobel的升级增强
# grad_y = cv.Scharr(image,cv.CV_32F,dx=0,dy=1) #对y求一阶导,Scharr算子是Sobel的升级增强
gradx = cv.convertScaleAbs(grad_x)
grady = cv.convertScaleAbs(grad_y)
cv.imshow("gardient_x",gradx) #x方向上的梯度
cv.imshow("gardient_y",grady) #y方向上的梯度
gradxy = cv.addWeighted(gradx,0.5,grady,0.5,0) #添加xy方向上权重各为0.5,z方向权重为0,图片融合
cv.imshow('gradient',gradxy) src = cv.imread('lena.jpg')
# cv.namedWindow('input_image',cv.WINDOW_AUTOSIZE)
cv.imshow('input_image1', src) soble_demo(src)
laplace_demo(src) cv.waitKey(0)
cv.destroyAllWindows()
注意:
1.Sobel算子用来计算图像灰度函数的近似梯度。Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。
2.Sobel具有平滑和微分的功效。即:Sobel算子先将图像横向或纵向平滑,然后再纵向或横向差分,得到的结果是平滑后的差分结果。
OpenCV的Sobel函数原型为:Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
src参数表示输入需要处理的图像。(必需)
ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。(必需)
  具体组合如下: 
  src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)
  src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F 
  src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F 
  src.depth() = CV_64F, 取ddepth = -1/CV_64F 
  注:ddepth =-1时,代表输出图像与输入图像相同的深度。
dx参数表示x方向上的差分阶数,1或0 。(必需)
dy参数表示y 方向上的差分阶数,1或0 。(必需)
dst参数表示输出与src相同大小和相同通道数的图像。
ksize参数表示Sobel算子的大小,必须为1、3、5、7。
scale参数表示缩放导数的比例常数,默认情况下没有伸缩系数。
delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。
borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。
参考:
https://blog.csdn.net/streamchuanxi/article/details/51542141
https://blog.csdn.net/sunny2038/article/details/9170013
Sobel算子原理:https://www.cnblogs.com/lancidie/archive/2011/07/17/2108885.html
注意:
Scharr算子也是计算x或y方向上的图像差分。OpenCV的Scharr函数原型为:Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst
参数和Sobel算子的几乎差不多,意思也一样,只是没有ksize大小。
2.OpenCV的convertScaleAbs函数使用线性变换转换输入数组元素成8位无符号整型。
函数原型:convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst
3.OpenCV的addWeighted函数是计算两个数组的加权和。
函数原型:addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst
src1参数表示需要加权的第一个输入数组。
alpha参数表示第一个数组的权重。
src2参数表示第二个输入数组,它和第一个数组拥有相同的尺寸和通道数。
beta参数表示第二个数组的权重。
gamma参数表示一个加到权重总和上的标量值。
dst参数表示输出的数组,它和输入的两个数组拥有相同的尺寸和通道数。
dtype参数表示输出数组的可选深度。当两个输入数组具有相同的深度时,这个参数设置为-1(默认值),即等同于src1.depth()。
#laplace算子
def laplace_demo(image):
dst = cv.Laplacian(image,cv.CV_32F)
lpls = cv.convertScaleAbs(dst) #自定义 cv.Laplacian(),内核kernel
kernel1 = np.array([[0,1,0],[1,-4,1],[0,1,0]]) #kernel1 内核相当于cv.Laplacian(src, ddepth, dst=None, ksize=1)
kernel2 = np.array([[1,1,1],[1,-8,1],[1,1,1]]) #kernel2 内核相当于
dst = cv.filter2D(image,cv.CV_32F,kernel=kernel2)
lpls = cv.convertScaleAbs(dst) cv.imshow("laplace_demo",lpls)
运行结果:

注意:
1.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。
2.OpenCV的Laplacian函数原型为:Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
src参数表示输入需要处理的图像。(必需)
ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。(必需)
  具体组合如下: 
  src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)
  src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F 
  src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F 
  src.depth() = CV_64F, 取ddepth = -1/CV_64F 
  注:ddepth =-1时,代表输出图像与输入图像相同的深度。
dst参数表示输出与src相同大小和相同通道数的图像。
ksize参数表示用于计算二阶导数滤波器的孔径大小,大小必须是正数和奇数。
scale参数表示计算拉普拉斯算子值的比例因子,默认情况下没有伸缩系数。
delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。
borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。
补:
这里ksize参数默认值为1,此时Laplacian()函数采用以下3x3的孔径:

参考:
https://www.jianshu.com/p/c946cbdb6081
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_gradients/py_gradients.html#gradients
【python-opencv】18-图像梯度+图像边界的更多相关文章
- python opencv:摄像头捕获图像
 - Python下opencv使用笔记(图像频域滤波与傅里叶变换)
		
Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654 收藏 展开 本文转载自 https://blog ...
 - Python+OpenCV图像处理(十二)—— 图像梯度
		
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
 - opencv python:图像梯度
		
一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...
 - OpenCV学习笔记(10)——图像梯度
		
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...
 - OpenCV常用基本处理函数(6)图像梯度
		
形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations ...
 - OpenCV Python教程(1、图像的载入、显示和保存)
		
原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV 2 Computer ...
 - opencv学习笔记(六)---图像梯度
		
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...
 - opencv:图像梯度
		
常见的图像梯度算子: 一阶导数算子: #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; ...
 
随机推荐
- osgEarth设置模型旋转角度
			
#include<windows.h> #include <osgViewer/Viewer> #include <osgEarthDrivers/gdal/GDALOp ...
 - Kafka一些常见资源汇总
			
终于下定决心写一点普及类的东西.很多同学对Kafka的使用很感兴趣.如果你想参与到Kafka的项目开发中,很多资源是你必须要提前准备好的.本文罗列了一些常用的Kafka资源,希望对这些develope ...
 - Linux 下 c 语言 聊天软件
			
这是我学C语言写的第一个软件,是一个完整的聊天软件,里面包括客户端,和服务器端,可以互现聊天,共享文件,有聊天室等,是一个有TCP和UDP协议的聊天软件,测试过很多次在CENTOS和UBUNTU下都通 ...
 - 关于RabbitMQ交换机的理解
			
RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性.扩展性.高可用性等方面表现不俗.消息中间件主要用于组件之间的解耦,消 ...
 - Jquery-无法有效获取当前窗口高度
			
今天碰到个很奇怪的事情,那就是滚动条往下滚动时候没有触发提示,反而是往上滚动的时候,触发了提示.百思不得其解,尤其是拿了美工大大的切图过来,一点问题都没有. 那么就进行console.log输出查看了 ...
 - PHP魔术变量和魔术方法
			
基础知识:魔术变量和魔术方法 魔术变量:最初PHP魔术变量的出现主要是为了方便开发者调试PHP的代码;当然也可以利用这个实现特殊需求.在写法上魔术变量前后都有两个下划线. 如:_LINE_:返回文件中 ...
 - 【大数据系列】hive安装及启动
			
一.安装好jdk和hadoop 二.下载apache-hive https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-2.3.0/ 三.解压到安装 ...
 - Win7 系统如何关闭休眠功能?(已解决)
			
一不小心,使用了系统的 休眠 功能. 一开始也没注意. 后来,发现C盘(系统盘)怎么变小了? 一想,应该是休眠的问题. 我就想把它生成的文件给删了. 为此,我特意把 文件夹选项 里的 显示隐藏文件和文 ...
 - LeetCode 12 Integer to Roman (整数转罗马数字)
			
题目链接: https://leetcode.com/problems/integer-to-roman/?tab=Description String M[] = {"", ...
 - mysql explain分析
			
通过explain可以知道mysql是如何处理语句,分析出查询或是表结构的性能瓶颈.通过expalin可以得到: 1. 表的读取顺序 2.表的读取操作的操作类型 3.哪些索引可以使用 4. 哪些索引被 ...