题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数。

思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 > 1e18,所以打60以内素数就够了。但是显然指数为素数依然会有重复的,比如(a^b)^c == (a^c)^b,这里就要用到容斥了。我们如果用一个数组a[i]表示指数为第i个素数的数的个数,那么最终答案应该是,加上一个的,减去两个的,加上三个的(因为2 * 3 * 5 * 7 > 60,最多只能有三个相乘形成指数)。如果我要算出指数为p的这样的数有几个,那么可以计算pow(n,1.0/p)。先写了一个朴素版的,纯枚举;后来又写了一个dfs的,这样大于3也能用了。

讲一些小细节,每次算出个数我们都减去1这里是去掉了1^p,我们在最后答案加上1。最后一个样例答案是“1001003332”,我的“1001003331”但是过了。

容斥:对于几个集合求解并集大小,那么采用一种方法:加上所有单个集合,减去所有两个集合相并部分,加上所有三个集合相并部分,减去所有四个集合相并部分.....

参考:学习容斥原理

代码:

/*朴素写法1*/
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = + ;
const int seed = ;
const int MOD = + ;
const int INF = 0x3f3f3f3f;
int prime[], p[], pn;
ll ans, n;
void get(){
memset(p, , sizeof(p));
pn = ;
for(int i = ; i <= ; i++){
if(!p[i]){
prime[pn++] = i;
for(int j = i * i; j <= ; j += i){
p[j] = ;
}
}
}
}
int main(){
get();
while(~scanf("%lld", &n)){
ans = ;
ll ret;
for(int i = ; i < pn; i++){
ret = pow((double)n, 1.0 / prime[i]);
if(ret == ) break;
ans += ret - ;
}
for(int i = ; i < pn; i++){
for(int j = i + ; j < pn; j++){
ret = pow((double)n, 1.0 / (prime[i] * prime[j]));
if(ret == ) break;
ans -= ret - ;
}
}
for(int i = ; i < pn; i++){
for(int j = i + ; j < pn; j++){
for(int k = j + ; k < pn; k++){
ret = pow((double)n, 1.0 / (prime[i] * prime[j] * prime[k]));
if(ret == ) break;
ans += ret - ;
}
}
}
printf("%lld\n", ans + );
}
return ;
}
/*dfs写法*/
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = + ;
const int seed = ;
const int MOD = + ;
const int INF = 0x3f3f3f3f;
int prime[], p[], pn;
ll ans, n, flag;
void get(){
memset(p, , sizeof(p));
pn = ;
for(int i = ; i <= ; i++){
if(!p[i]){
prime[pn++] = i;
for(int j = i * i; j <= ; j += i){
p[j] = ;
}
}
}
}
void dfs(int start, int p, int times){
if(times == ){
ll ret = pow((double)n, 1.0 / p);
if(ret == ) return;
ret--;
ans += flag * ret;
return;
}
for(int i = start; i < pn; i++){
dfs(i + , p * prime[i], times - );
}
}
int main(){
get();
while(~scanf("%lld", &n)){
ans = ;
ll ret;
flag = -;
for(int i = ; i <= ; i++){
flag *= -;
dfs(, , i);
}
printf("%lld\n", ans + );
}
return ;
}

HDU 2204 Eddy's爱好(容斥原理dfs写法)题解的更多相关文章

  1. HDU 2204 Eddy's 爱好 (容斥原理)

    <题目链接> 题目大意: Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣. 这些特殊数是 ...

  2. hdu 2204 Eddy's爱好 容斥原理

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  3. HDU 2204 Eddy's爱好(容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...

  4. hdu 2204 Eddy's爱好

    // 一个整数N,1<=N<=1000000000000000000(10^18).// 输出在在1到N之间形式如M^K的数的总数// 容斥原理// 枚举k=集合{2,3,5,7,11,1 ...

  5. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  6. Eddy's爱好(dfs+容斥)

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  7. hdoj 2204 Eddy's爱好

    原文链接:http://www.cnblogs.com/DrunBee/archive/2012/09/05/2672546.html 题意:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K ...

  8. HDU 2204Eddy's爱好(容斥原理)

    Eddy's爱好 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  9. hdu2204 Eddy's爱好 打表+容斥原理

    Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣.这些特殊数是这样的:这些数都能表示成M^K,M和K是 ...

随机推荐

  1. Window版本 安装mysql

    #1.下载:MySQL Community Server 5.7.16 http://dev.mysql.com/downloads/mysql/ 下载下来解压到指定目录 就安装完成了 #2.解压 如 ...

  2. 廖威雄: 思维导图:利用__attribute__((section()))构建初始化函数表与Linux内核init的实现

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/juS3Ve/article/details/79049404 本文具体解说了利用__attribut ...

  3. 详解Linux(centos7)下安装OpenSSL安装图文方法

    OpenSSL是一个开源的ssl技术,由于我需要使用php相关功能,需要获取https的文件所以必须安装这个东西了,下面我整理了两种关于OpenSSL安装配置方法. 安装环境:  操作系统:CentO ...

  4. 支持向量机(SVM)、支持向量回归(SVR)

    1.支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法.它的机器学习策略是结构风险最小化原则 为了最小化期望风险,应同时最小化经验风险和置信范围) 支持向量机方法的基本思想: ( 1 ...

  5. jmeter 读取excel数据

    jmeter 读取excel数据使用的方法是使用Jmeter CSV Data Set Config参数化 但是将excel文件保存成csv格式后,jmeter读取后返回的数据总是出现乱码问题, 以下 ...

  6. suiyi

    <?php namespace app\controllers; use Yii;use app\models\Device;use app\models\DeviceSearch;use ap ...

  7. bzoj4561: [JLoi2016]圆的异或并 圆的扫描线

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...

  8. vim的简单配置

    本文大部分内容转载自:https://blog.csdn.net/lhy2932226314/article/details/69668891 vim是从 vi 发展出来的一个文本编辑器.功能丰富,在 ...

  9. Linux基础命令---cat

    cat 连接文本文件或者标准输入,将结果输出到标准输出设备. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法       c ...

  10. Linux基础命令---dumpe2fs

    dumpe2fs 显示ext2.ext3.ext4文件系统的超级快和块组信息.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 ...