HDU 2204 Eddy's爱好(容斥原理dfs写法)题解
题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数。
思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 > 1e18,所以打60以内素数就够了。但是显然指数为素数依然会有重复的,比如(a^b)^c == (a^c)^b,这里就要用到容斥了。我们如果用一个数组a[i]表示指数为第i个素数的数的个数,那么最终答案应该是,加上一个的,减去两个的,加上三个的(因为2 * 3 * 5 * 7 > 60,最多只能有三个相乘形成指数)。如果我要算出指数为p的这样的数有几个,那么可以计算pow(n,1.0/p)。先写了一个朴素版的,纯枚举;后来又写了一个dfs的,这样大于3也能用了。
讲一些小细节,每次算出个数我们都减去1这里是去掉了1^p,我们在最后答案加上1。最后一个样例答案是“1001003332”,我的“1001003331”但是过了。
容斥:对于几个集合求解并集大小,那么采用一种方法:加上所有单个集合,减去所有两个集合相并部分,加上所有三个集合相并部分,减去所有四个集合相并部分.....
参考:学习容斥原理
代码:
/*朴素写法1*/
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = + ;
const int seed = ;
const int MOD = + ;
const int INF = 0x3f3f3f3f;
int prime[], p[], pn;
ll ans, n;
void get(){
memset(p, , sizeof(p));
pn = ;
for(int i = ; i <= ; i++){
if(!p[i]){
prime[pn++] = i;
for(int j = i * i; j <= ; j += i){
p[j] = ;
}
}
}
}
int main(){
get();
while(~scanf("%lld", &n)){
ans = ;
ll ret;
for(int i = ; i < pn; i++){
ret = pow((double)n, 1.0 / prime[i]);
if(ret == ) break;
ans += ret - ;
}
for(int i = ; i < pn; i++){
for(int j = i + ; j < pn; j++){
ret = pow((double)n, 1.0 / (prime[i] * prime[j]));
if(ret == ) break;
ans -= ret - ;
}
}
for(int i = ; i < pn; i++){
for(int j = i + ; j < pn; j++){
for(int k = j + ; k < pn; k++){
ret = pow((double)n, 1.0 / (prime[i] * prime[j] * prime[k]));
if(ret == ) break;
ans += ret - ;
}
}
}
printf("%lld\n", ans + );
}
return ;
}
/*dfs写法*/
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = + ;
const int seed = ;
const int MOD = + ;
const int INF = 0x3f3f3f3f;
int prime[], p[], pn;
ll ans, n, flag;
void get(){
memset(p, , sizeof(p));
pn = ;
for(int i = ; i <= ; i++){
if(!p[i]){
prime[pn++] = i;
for(int j = i * i; j <= ; j += i){
p[j] = ;
}
}
}
}
void dfs(int start, int p, int times){
if(times == ){
ll ret = pow((double)n, 1.0 / p);
if(ret == ) return;
ret--;
ans += flag * ret;
return;
}
for(int i = start; i < pn; i++){
dfs(i + , p * prime[i], times - );
}
}
int main(){
get();
while(~scanf("%lld", &n)){
ans = ;
ll ret;
flag = -;
for(int i = ; i <= ; i++){
flag *= -;
dfs(, , i);
}
printf("%lld\n", ans + );
}
return ;
}
HDU 2204 Eddy's爱好(容斥原理dfs写法)题解的更多相关文章
- HDU 2204 Eddy's 爱好 (容斥原理)
<题目链接> 题目大意: Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣. 这些特殊数是 ...
- hdu 2204 Eddy's爱好 容斥原理
Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- HDU 2204 Eddy's爱好(容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...
- hdu 2204 Eddy's爱好
// 一个整数N,1<=N<=1000000000000000000(10^18).// 输出在在1到N之间形式如M^K的数的总数// 容斥原理// 枚举k=集合{2,3,5,7,11,1 ...
- HDU - 2204 Eddy's爱好 (数论+容斥)
题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...
- Eddy's爱好(dfs+容斥)
Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- hdoj 2204 Eddy's爱好
原文链接:http://www.cnblogs.com/DrunBee/archive/2012/09/05/2672546.html 题意:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K ...
- HDU 2204Eddy's爱好(容斥原理)
Eddy's爱好 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- hdu2204 Eddy's爱好 打表+容斥原理
Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣.这些特殊数是这样的:这些数都能表示成M^K,M和K是 ...
随机推荐
- 机器学习【算法】:KNN近邻
引言 本文讨论的kNN算法是监督学习中分类方法的一种.所谓监督学习与非监督学习,是指训练数据是否有标注类别,若有则为监督学习,若否则为非监督学习.监督学习是根据输入数据(训练数据)学习一个模型,能对后 ...
- CentOS网卡配置大全
持续更新中... 1.配置机器名 2.配置网卡属性 3.问题解决 3.1解决网卡经常需要手动重连问题 vi /etc/sysconfig/network-scripts/ifcfg-ens33 把ON ...
- 配合dedecms内容模型实现后台输入栏目id前端输出文章列表
为了简化开发的工作量,也方便编辑快速操作,决定将后台进行重新设置.配合dedecms内容模型实现后台输入栏目id前端输出文章列表,这样制作科室专题页也变快了很多.比如,我们添加一个“科室专家栏目id” ...
- UIWebview于JS交互
最近使用火车票网的限行网页,但是广告以及头部nav和地步footer都是我们现在所不需要的,所以决定使用js交互,下面所有代码都写在 webViewDidFinishLoad 里面 1.查看原网址的源 ...
- 003-spring cloud gateway-概述、Route模型、网关初始化配置过程、基本原理
一.概述 网关服务核心是将进入的请求正确合理的路由到下层具体的服务进行业务处理,由此可见网关服务的核心就是路由信息的构建. Spring Cloud Gateway旨在提供一种简单而有效的方式来路由到 ...
- HTTP 教程
HTTP 简介 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标准. HTTP是一个基于 ...
- Selenium Webdriver——操作隐藏的元素(二)display属性
有时候我们会碰到一些元素不可见,这个时候selenium就无法对这些元素进行操作了.例如,下面的情况: 页面主要通过“display:none”来控制整个下拉框不可见.这个时候如果直接操作这个下拉框, ...
- os模块的使用
python编程时,经常和文件.目录打交道,这是就离不了os模块.os模块包含普遍的操作系统功能,与具体的平台无关.以下列举常用的命令 1. os.name()——判断现在正在实用的平台,Window ...
- Liferay中request
在liferay中的请求分为renderRequest和actionRequest这两种请求的方式,portletRequest的子类有三个1renderRequest,2EventRequest3C ...
- easyDialog参数配置说明
easyDialog不依赖框架,使用起来很简单,只要引入easydialog.js文件就可以使用了: // 引入easyDialog <script src="easydialog.j ...