HDU 2204 Eddy's爱好(容斥原理dfs写法)题解
题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数。
思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 > 1e18,所以打60以内素数就够了。但是显然指数为素数依然会有重复的,比如(a^b)^c == (a^c)^b,这里就要用到容斥了。我们如果用一个数组a[i]表示指数为第i个素数的数的个数,那么最终答案应该是,加上一个的,减去两个的,加上三个的(因为2 * 3 * 5 * 7 > 60,最多只能有三个相乘形成指数)。如果我要算出指数为p的这样的数有几个,那么可以计算pow(n,1.0/p)。先写了一个朴素版的,纯枚举;后来又写了一个dfs的,这样大于3也能用了。
讲一些小细节,每次算出个数我们都减去1这里是去掉了1^p,我们在最后答案加上1。最后一个样例答案是“1001003332”,我的“1001003331”但是过了。
容斥:对于几个集合求解并集大小,那么采用一种方法:加上所有单个集合,减去所有两个集合相并部分,加上所有三个集合相并部分,减去所有四个集合相并部分.....
参考:学习容斥原理
代码:
/*朴素写法1*/
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = + ;
const int seed = ;
const int MOD = + ;
const int INF = 0x3f3f3f3f;
int prime[], p[], pn;
ll ans, n;
void get(){
memset(p, , sizeof(p));
pn = ;
for(int i = ; i <= ; i++){
if(!p[i]){
prime[pn++] = i;
for(int j = i * i; j <= ; j += i){
p[j] = ;
}
}
}
}
int main(){
get();
while(~scanf("%lld", &n)){
ans = ;
ll ret;
for(int i = ; i < pn; i++){
ret = pow((double)n, 1.0 / prime[i]);
if(ret == ) break;
ans += ret - ;
}
for(int i = ; i < pn; i++){
for(int j = i + ; j < pn; j++){
ret = pow((double)n, 1.0 / (prime[i] * prime[j]));
if(ret == ) break;
ans -= ret - ;
}
}
for(int i = ; i < pn; i++){
for(int j = i + ; j < pn; j++){
for(int k = j + ; k < pn; k++){
ret = pow((double)n, 1.0 / (prime[i] * prime[j] * prime[k]));
if(ret == ) break;
ans += ret - ;
}
}
}
printf("%lld\n", ans + );
}
return ;
}
/*dfs写法*/
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = + ;
const int seed = ;
const int MOD = + ;
const int INF = 0x3f3f3f3f;
int prime[], p[], pn;
ll ans, n, flag;
void get(){
memset(p, , sizeof(p));
pn = ;
for(int i = ; i <= ; i++){
if(!p[i]){
prime[pn++] = i;
for(int j = i * i; j <= ; j += i){
p[j] = ;
}
}
}
}
void dfs(int start, int p, int times){
if(times == ){
ll ret = pow((double)n, 1.0 / p);
if(ret == ) return;
ret--;
ans += flag * ret;
return;
}
for(int i = start; i < pn; i++){
dfs(i + , p * prime[i], times - );
}
}
int main(){
get();
while(~scanf("%lld", &n)){
ans = ;
ll ret;
flag = -;
for(int i = ; i <= ; i++){
flag *= -;
dfs(, , i);
}
printf("%lld\n", ans + );
}
return ;
}
HDU 2204 Eddy's爱好(容斥原理dfs写法)题解的更多相关文章
- HDU 2204 Eddy's 爱好 (容斥原理)
<题目链接> 题目大意: Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣. 这些特殊数是 ...
- hdu 2204 Eddy's爱好 容斥原理
Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- HDU 2204 Eddy's爱好(容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...
- hdu 2204 Eddy's爱好
// 一个整数N,1<=N<=1000000000000000000(10^18).// 输出在在1到N之间形式如M^K的数的总数// 容斥原理// 枚举k=集合{2,3,5,7,11,1 ...
- HDU - 2204 Eddy's爱好 (数论+容斥)
题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...
- Eddy's爱好(dfs+容斥)
Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- hdoj 2204 Eddy's爱好
原文链接:http://www.cnblogs.com/DrunBee/archive/2012/09/05/2672546.html 题意:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K ...
- HDU 2204Eddy's爱好(容斥原理)
Eddy's爱好 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- hdu2204 Eddy's爱好 打表+容斥原理
Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣.这些特殊数是这样的:这些数都能表示成M^K,M和K是 ...
随机推荐
- Python开发【笔记】:什么是RESTful框架
RESTful框架 前言: 一句话总结:用URL定位资源,用HTTP描述操作 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件"采用客户端/服务器模式 ...
- CentOS关闭防火墙&SELinux
须知: 防火墙配置文件:/etc/sysconfig/iptables 查看防火墙状态:service iptables status 关闭防火墙:service iptables stop 关闭ip ...
- javaScript高级教程(九) ------javascript对象字面量--------困扰已久的问题
在编程语言中,字面量是一种表示值的记法.例如,"Hello, World!" 在许多语言中都表示一个字符串字面量(string literal ),JavaScript也不例外. ...
- PythonWeb 开发记录(一)
安装Django Sudo apt-get install python-django 验证安装Django成功 创建Django应用程式的方式 创建的是解决方案 ,然后创建的是Hi 模块 运行项目: ...
- APICloud-端JS库功能API文档(1)
框架简介: 框架基于APICloud官网端API进行扩展和封装,框架完全采用面向对象编程形式,里面包含APP所使用的常用js功能:js类的自定义(类,构造方法,静态方法,继承...),常用工具函数(验 ...
- [py]py常用模块小结
- python md5校验: https://blog.csdn.net/linda1000/article/details/17581035 import hashlib hashlib.md5( ...
- [py]str list切片-去除字符串首尾空格-递归思想
取出arr的前几项 #方法1 print([arr[0], arr[1]]) #方法2 arr2 = [] for i in range(2): arr2.append(arr[i]) print(a ...
- python 根据路径导入模块
Import python module NOT on path http://stackoverflow.com/questions/10161568/import-python-module-no ...
- (转)Linux Oracle服务启动&停止脚本与开机自启动
在CentOS 6.3下安装完Oracle 10g R2,重开机之后,你会发现Oracle没有自行启动,这是正常的,因为在Linux下安装Oracle的确不会自行启动,必须要自行设定相关参数,首先先介 ...
- Python爬虫第一个成功版
爬取http://www.mzitu.com/all里面的图片 import urllib.request import re import os url = 'http://www.mzitu.co ...