INDEX

Introducing ML

What you learn here will allow you, as a software engineer, to do three things better.

  • First, it gives you a tool to reduce the time you spend programming.
  • Second, it will allow you to customize your products, making them better for specific groups of people.
  • Third, machine learning lets you solve problems that you, as a programmer, have no idea how to do by hand.

Now, besides these three practical reasons for mastering machine learning, there's a philosophical reason: machine learning changes the way you think about a problem.

we use assertions to prove properties of our program are correct. With machine learning, the focus shifts from a mathematical science to a natural science: we're making observations about an uncertain world, running experiments, and using statistics, not logic, to analyze the results of the experiment. The ability to think like a scientist will expand your horizons and open up new areas that you couldn't explore without it.

Framing

Hi, my name is D. Sculley.
I'm one of the people who is coming to you from Google in order to present this Machine Learning Crash Course with TensorFlow APIs.
Now, before we dive in, let's take a second to remind ourselves of the basic framework that we are talking about in this class.
And that basic framework is supervised machine learning.
In supervised machine learning, we are learning to create models that combine inputs, to produce useful predictions even on previously unseen data.
Now, where we're training that model, we're providing it with labels.
And in the case of, say, email spam filtering, that label might be something like 'spam or not spam'.
It's the target that we're trying to predict.
The features are the way that we represent our data.
So features might be drawn from an email as, say, words in the email or "to and from addresses", various pieces of routing or header information, any piece of information that we might extract from that email. to represent it for our machine learning system.
An example, is one piece of data.
For example, one email.
Now that could be a labeled example in which we have both feature information, represented in that email, and the label value, of 'spam or not spam'.
Maybe that's come from a user who has provided that to us.
Or we could have an unlabeled example, such as a piece of email for which we have feature information, but we don't yet know whether it is spam or not spam.
And likely what we are going to do is classify that to put it in the user's inbox or spam folder.
Finally, we have a model and that model is the thing that is doing the predicting.
It's something that we're going to try and create through a process of learning from data.

Fundamental machine learning terminology

Labels

label 是我们所预测的东西。例如,在垃圾邮件过滤系统中,label 是类似于“垃圾邮件或非垃圾邮件”的东西。

用 y 来表示它。

Features

feature 是输入的变量。在垃圾邮件过滤系统中,feature 可以包括:邮件文本中的单词、发送者地址、发送时间等。

一个简单的机器学习系统可能只用一个 feature,但是对于复杂的机器学习系统而言,可能用到上百万个 feature 。

Examples

example 是数据的特定实例。它分为两种:labeled examples 和 unlabeled examples 。

在垃圾邮件过滤系统中,labeled example 就是“已经被确切标记为垃圾或者非垃圾”的邮件,unlabeled examples 则是“没有被确切标记为垃圾或者非垃圾”的邮件。

我们通过 labeled examples 训练模型,再通过模型来分类尚未标记的邮件。

Models

model 定义了 feature 和 label 之间的关系。在垃圾邮件过滤系统中, 特定的 feature 可能和垃圾邮件关联起来。

model 生命周期的两个阶段:

  • 训练(英:Training 或 learning the model)。通俗而言,就是把已经分类好的 labeled example 呈现给模型,使得模型渐渐学会 feature 和 label 之间的关系。
  • 推断意味用已经训练好的模型来预测未分类的 unlabeled example 。

Regression vs. classification

regression 模型预测连续的值。例如:明天气温多少度?北京的房价是多少?

classification 模型预测离散的值。例如:图片上是猫还是狗?垃圾邮件或者非垃圾邮件?

Google's Machine Learning Crash Course #01# Introducing ML & Framing & Fundamental terminology的更多相关文章

  1. Google's Machine Learning Crash Course #02# Descending into ML

    INDEX How do we know if we have a good line Linear Regression Training and Loss How do we know if we ...

  2. Google's Machine Learning Crash Course #03# Reducing Loss

    Goal of training a model is to find a set of weights and biases that have low loss, on average, acro ...

  3. Google's Machine Learning Crash Course #04# First Steps with TensorFlow

    1.使用 TensorFlow 的建议 Which API(s) should you use? You should use the highest level of abstraction tha ...

  4. 学习笔记之Machine Learning Crash Course | Google Developers

    Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/c ...

  5. Machine Learning 学习笔记 01 Typora、配置OSS、导论

    Typora 安装与使用. Typora插件. OSS图床配置. 机器学习导论. 机器学习的基本思路. 机器学习实操的7个步骤

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. 学习笔记之机器学习(Machine Learning)

    机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...

  8. 基于Windows 机器学习(Machine Learning)的图像分类(Image classification)实现

    今天看到一篇文章  Google’s Image Classification Model is now Free to Learn  说是狗狗的机器学习速成课程(Machine Learning C ...

  9. machine learning----->谷歌Cloud Machine Learning平台

    1.谷歌Cloud Machine Learning平台简介: 机器学习的三要素是数据源.计算资源和模型.谷歌在这三个方面都有强大的支撑:谷歌不仅有种类丰富且数量庞大的数据资源,而且有强大的计算机群提 ...

随机推荐

  1. 微信小程序APP(商超营销类)经验总结

    项目介绍 这是一款主打门店营销的小程序.包括首页.门店.营销.个人设置.登录.数据统计展示.营销设置等. 本来要独立完成整个项目,包括前后端一套的,有些意外因素,项目临时收尾(说明:只完成了前端的部分 ...

  2. hdu-4283 You Are the One 区间dp,

    题意:n个人排队上台,每个人有一屌丝值D,他的不满意值=D*(k-1)(k为他前面的总人数). 求整个队列不满意值之和的最小值.你只有一个操作,就是把队首的人塞进小黑屋,也就是压入栈中,后面的人就被提 ...

  3. cordova插件file使用时遇到的一个平台相关的问题

    使用cordova-plugin-file可以帮助我们方便的操作app中的图片等文件,分享一下我在用该插件从图库读取图片时遇到的一个平台相关的小问题. 使用场景,我会在APP中新增一张图片,会有一个可 ...

  4. CH0102 64位整数乘法 数论

    正解:数论/一个神仙想法 解题报告: 先放传送门qwq 两种方法,都还挺妙的就都写了qwq 第一种是快速幂 把b用二进制表示成,ck*2k+ck-1*2k-1+...+c0*20 然后就可以表示成,a ...

  5. 程序猿职业生涯中的 Norris 常数

    我的朋友Clift Norris发现了一个基本常数.我称之为Norris常数,一个未经培训的程序猿在他或她遇到瓶颈之前能写出的平均代码量.Clift预计这个值是1500行. 超过这个数以后,代码会变得 ...

  6. Java List <T> T[] toArray(T[] a) implementation

    Like the toArray() method, this method acts as bridge between array-based and collection-based APIs. ...

  7. iOS入门怎样选择Swift和objective-c

    版权声明:本文为博主原创文章,未经博主同意不得转载.博主微信:lofocus https://blog.csdn.net/cuibo1123/article/details/28261795 学oc吧 ...

  8. 万恶之源 - Python基础数据类型一

    整数 整数在Python中的关键字用int来表示; 整型在计算机中运于计算和比较 在32位机器上int的范围是:  -2**31-2**31-1,即-2147483648-2147483647 在64 ...

  9. oj1500(Message Flood)字典树

    大意:输入几个字符串,然后再输入几个字符串,看第一次输入的字符串有多少没有在后面的字符串中出现(后输入的字符串不一定出现在之前的字符串中) #include <stdio.h> #incl ...

  10. zabbix 微信报警脚本

    不知道是什么原因直接用Python脚本zabbix无法执行脚本,需要一个shell来启动 #! /bin/bash userid=$ content=$ python /data/zabbix/ale ...