Google's Machine Learning Crash Course #01# Introducing ML & Framing & Fundamental terminology
INDEX
Introducing ML
What you learn here will allow you, as a software engineer, to do three things better.
- First, it gives you a tool to reduce the time you spend programming.
- Second, it will allow you to customize your products, making them better for specific groups of people.
- Third, machine learning lets you solve problems that you, as a programmer, have no idea how to do by hand.
Now, besides these three practical reasons for mastering machine learning, there's a philosophical reason: machine learning changes the way you think about a problem.
we use assertions to prove properties of our program are correct. With machine learning, the focus shifts from a mathematical science to a natural science: we're making observations about an uncertain world, running experiments, and using statistics, not logic, to analyze the results of the experiment. The ability to think like a scientist will expand your horizons and open up new areas that you couldn't explore without it.
Framing
Hi, my name is D. Sculley.
I'm one of the people who is coming to you from Google in order to present this Machine Learning Crash Course with TensorFlow APIs.
Now, before we dive in, let's take a second to remind ourselves of the basic framework that we are talking about in this class.
And that basic framework is supervised machine learning.
In supervised machine learning, we are learning to create models that combine inputs, to produce useful predictions even on previously unseen data.
Now, where we're training that model, we're providing it with labels.
And in the case of, say, email spam filtering, that label might be something like 'spam or not spam'.
It's the target that we're trying to predict.
The features are the way that we represent our data.
So features might be drawn from an email as, say, words in the email or "to and from addresses", various pieces of routing or header information, any piece of information that we might extract from that email. to represent it for our machine learning system.
An example, is one piece of data.
For example, one email.
Now that could be a labeled example in which we have both feature information, represented in that email, and the label value, of 'spam or not spam'.
Maybe that's come from a user who has provided that to us.
Or we could have an unlabeled example, such as a piece of email for which we have feature information, but we don't yet know whether it is spam or not spam.
And likely what we are going to do is classify that to put it in the user's inbox or spam folder.
Finally, we have a model and that model is the thing that is doing the predicting.
It's something that we're going to try and create through a process of learning from data.
Fundamental machine learning terminology
Labels
label 是我们所预测的东西。例如,在垃圾邮件过滤系统中,label 是类似于“垃圾邮件或非垃圾邮件”的东西。
用 y 来表示它。
Features

feature 是输入的变量。在垃圾邮件过滤系统中,feature 可以包括:邮件文本中的单词、发送者地址、发送时间等。
一个简单的机器学习系统可能只用一个 feature,但是对于复杂的机器学习系统而言,可能用到上百万个 feature 。
Examples
example 是数据的特定实例。它分为两种:labeled examples 和 unlabeled examples 。


在垃圾邮件过滤系统中,labeled example 就是“已经被确切标记为垃圾或者非垃圾”的邮件,unlabeled examples 则是“没有被确切标记为垃圾或者非垃圾”的邮件。
我们通过 labeled examples 训练模型,再通过模型来分类尚未标记的邮件。
Models
model 定义了 feature 和 label 之间的关系。在垃圾邮件过滤系统中, 特定的 feature 可能和垃圾邮件关联起来。
model 生命周期的两个阶段:
- 训练(英:Training 或 learning the model)。通俗而言,就是把已经分类好的 labeled example 呈现给模型,使得模型渐渐学会 feature 和 label 之间的关系。
- 推断意味用已经训练好的模型来预测未分类的 unlabeled example 。
Regression vs. classification
regression 模型预测连续的值。例如:明天气温多少度?北京的房价是多少?
classification 模型预测离散的值。例如:图片上是猫还是狗?垃圾邮件或者非垃圾邮件?
Google's Machine Learning Crash Course #01# Introducing ML & Framing & Fundamental terminology的更多相关文章
- Google's Machine Learning Crash Course #02# Descending into ML
INDEX How do we know if we have a good line Linear Regression Training and Loss How do we know if we ...
- Google's Machine Learning Crash Course #03# Reducing Loss
Goal of training a model is to find a set of weights and biases that have low loss, on average, acro ...
- Google's Machine Learning Crash Course #04# First Steps with TensorFlow
1.使用 TensorFlow 的建议 Which API(s) should you use? You should use the highest level of abstraction tha ...
- 学习笔记之Machine Learning Crash Course | Google Developers
Machine Learning Crash Course | Google Developers https://developers.google.com/machine-learning/c ...
- Machine Learning 学习笔记 01 Typora、配置OSS、导论
Typora 安装与使用. Typora插件. OSS图床配置. 机器学习导论. 机器学习的基本思路. 机器学习实操的7个步骤
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- 学习笔记之机器学习(Machine Learning)
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...
- 基于Windows 机器学习(Machine Learning)的图像分类(Image classification)实现
今天看到一篇文章 Google’s Image Classification Model is now Free to Learn 说是狗狗的机器学习速成课程(Machine Learning C ...
- machine learning----->谷歌Cloud Machine Learning平台
1.谷歌Cloud Machine Learning平台简介: 机器学习的三要素是数据源.计算资源和模型.谷歌在这三个方面都有强大的支撑:谷歌不仅有种类丰富且数量庞大的数据资源,而且有强大的计算机群提 ...
随机推荐
- windows乱码
对于支持 UNICODE的应用程序,Windows 会默认使用 Unicode编码.对于不支持Unicode的应用程序Windows 会采用 ANSI编码 (也就是各个国家自己制定的标准编码方式,如对 ...
- 《机器学习实战》2.2.2分析数据:使用matplotlib创建散点图
#输出散点图 def f(): datingDataMat,datingLabels = file2matrix("datingTestSet3.txt") fig = plt.f ...
- win10 64bit安装redis及redis desktop manager的方法
下载地址: MSOpenTech/redis——Github 下载后随便解压到一个地方 在 命令行 启动服务端 命令内容如下: redis-server.exe redis.windows.conf ...
- getopts shell command -options parameters
说明:原文网址http://blog.chinaunix.net/uid-26807463-id-3151601.html 获取UNIX类型的选项: unix有一个优点就是标准UNIX命令在执行时都具 ...
- 02 - nginx - 反向代理、限速
一.Nginx反向代理 代理服务器,客户机在发送请求时,不会直接发送给目的主机,而是先发送给代理服务器. 代理服务接受客户机请求之后,再向主机发出,并接收目的主机返回的数据,存放在代理服务器的硬盘中, ...
- sql 对某列取值进行if判断
select if(area_id =350000, 1, 2) as area_id from my_table 取地区编号为350000的设置成 1, 其他的设置成2
- django时间的时区问题
在用django1.8版本做项目的时候遇到时间的存储与读取不一致的问题,网上找了很多帖子,但都没有讲明白.本文将在项目中遇到的问题及如何解决的尽可能详细的记录下来,当然本文参考了网上大量相关文章. 在 ...
- /proc/meminfo
/proc/meminfo 可以查看自己服务器 物理内存 注意这个文件显示的单位是kB而不是KB,1kB=1000B,但是实际上应该是KB,1KB=1024B 这个显示是不精确的,是一个已知的没有被 ...
- 怎么设置输入的EditText字母自己主动大写
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/t80t90s/article/details/25048917 复于: 2013-09-06 09: ...
- 13 jmeter性能测试实战--FTP程序
需求 上传一个文件到服务器(put),下载一个文件到本地(get). 测试步骤 1.创建一个线程组. 2.线程组-->添加-->配置元件-->FTP请求缺省值(可有可无,相当于给“服 ...