Description

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When
    the stone stands still, you can make it moving by throwing it. You may
    throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).

      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You
    cannot throw the stone more than 10 times in a game. If the stone does
    not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under
the rules, we would like to know whether the stone at the start can
reach the goal and, if yes, the minimum number of moves required.

With
the initial configuration shown in Fig. 1, 4 moves are required to
bring the stone from the start to the goal. The route is shown in Fig.
3(a). Notice when the stone reaches the goal, the board configuration
has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The
input is a sequence of datasets. The end of the input is indicated by a
line containing two zeros separated by a space. The number of datasets
never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board
First row of the board
...
h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0 vacant square
1 block
2 start position
3 goal position

The dataset for Fig. D-1 is as follows:

6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1

Output

For
each dataset, print a line having a decimal integer indicating the
minimum number of moves along a route from the start to the goal. If
there are no such routes, print -1 instead. Each line should not have
any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1 题目大意:冰壶在冰上可以不停的滑下去,直到碰到障碍物,导致的结果是冰壶静止在障碍物的前一个位置并且障碍物消失。冰壶每静止一次就需要人力来“投掷”一次。一张图,0表示冰,1表示障碍物,问冰壶从起点到终点最少需要几次“投掷”。
题目分析:DFS。模拟这个过程就行了。 代码如下:
 # include<iostream>
# include<cstdio>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std; int r,c,mp[][]; int ans;
void dfs(int x,int y,int k)
{
if(k>)
return ;
if(mp[x-][y]!=){
for(int nx=x-;nx>=;--nx){
if(mp[nx][y]==){
ans=min(ans,k+);
break ;
}
if(mp[nx][y]==){
mp[nx][y]=;
dfs(nx+,y,k+);
mp[nx][y]=;
break ;
}
}
}
if(mp[x+][y]!=){
for(int nx=x+;nx<r;++nx){
if(mp[nx][y]==){
ans=min(ans,k+);
break ;
}
if(mp[nx][y]==){
mp[nx][y]=;
dfs(nx-,y,k+);
mp[nx][y]=;
break ;
}
}
}
if(mp[x][y-]!=){
for(int ny=y-;ny>=;--ny){
if(mp[x][ny]==){
ans=min(ans,k+);
break;
}
if(mp[x][ny]==){
mp[x][ny]=;
dfs(x,ny+,k+);
mp[x][ny]=;
break;
}
}
}
if(mp[x][y+]!=){
for(int ny=y+;ny<c;++ny){
if(mp[x][ny]==){
ans=min(ans,k+);
break;
}
if(mp[x][ny]==){
mp[x][ny]=;
dfs(x,ny-,k+);
mp[x][ny]=;
break;
}
}
}
}
int main()
{
//freopen("POJ-3009 Curling 2.0.txt","r",stdin);
while(scanf("%d%d",&c,&r),r+c)
{
int sx,sy;
for(int i=;i<r;++i){
for(int j=;j<c;++j){
scanf("%d",&mp[i][j]);
if(mp[i][j]==){
sx=i,sy=j;
mp[i][j]=;
}
}
}
ans=;
dfs(sx,sy,);
if(ans>)
printf("-1\n");
else
printf("%d\n",ans);
}
return ;
}

POJ-3009 Curling 2.0 (DFS)的更多相关文章

  1. poj 3009 Curling 2.0 (dfs )

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11879   Accepted: 5028 Desc ...

  2. POJ3009:Curling 2.0(dfs)

    http://poj.org/problem?id=3009 Description On Planet MM-21, after their Olympic games this year, cur ...

  3. POJ 3009 Curling 2.0 回溯,dfs 难度:0

    http://poj.org/problem?id=3009 如果目前起点紧挨着终点,可以直接向终点滚(终点不算障碍) #include <cstdio> #include <cst ...

  4. POJ3009 Curling 2.0(DFS)

    题目链接. 分析: 本题BFS A不了. 00100 00001 01020 00000 00010 00010 00010 00010 00030 对于这样的数据,本来应当是 5 步,但bfs却 4 ...

  5. POJ 3009 Curling 2.0 {深度优先搜索}

    原题 $On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules ...

  6. 【POJ - 3009】Curling 2.0 (dfs+回溯)

    -->Curling 2.0 直接上中文 Descriptions: 今年的奥运会之后,在行星mm-21上冰壶越来越受欢迎.但是规则和我们的有点不同.这个游戏是在一个冰游戏板上玩的,上面有一个正 ...

  7. POJ 3009 Curling 2.0【带回溯DFS】

    POJ 3009 题意: 给出一个w*h的地图,其中0代表空地,1代表障碍物,2代表起点,3代表终点,每次行动可以走多个方格,每次只能向附近一格不是障碍物的方向行动,直到碰到障碍物才停下来,此时障碍物 ...

  8. POJ 3009-Curling 2.0(DFS)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12158   Accepted: 5125 Desc ...

  9. poj3009 Curling 2.0 (DFS按直线算步骤)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14563   Accepted: 6080 Desc ...

随机推荐

  1. python之路----面向对象的继承特性

    继承 什么是继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类 python中类的继承分为:单继承和多继承 class ...

  2. P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题

    P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...

  3. c/c++的typedef/using类型别名

    久而久之,发现c/c++的typedef给类型自定义别名的语法糖就保证设计的一致性而言,确实是个相当不错的特性,跟oracle pl/sql的rowtype或type一样,可惜java.mysql均不 ...

  4. 经典模块化的前端框架:layer

    官网:http://layer.layui.com/ 官网论坛里有许多后台界面可参考下载.其中后台管理界面和弹窗功能都是比较常用的.

  5. Duilib 实现开关按钮

    转载:http://blog.csdn.net/wuan584974722/article/details/25045737 我们在做MFC程序时候经常会一个切换式的按钮,之前我的做法是利用butti ...

  6. LightOJ - 1247 Matrix Game (Nim博弈)题解

    题意: 给一个矩阵,每一次一个玩家可以从任意一行中选任意数量的格子并从中拿石头(但最后总数要大于等于1),问你谁赢 思路: 一开始以为只能一行拿一个... 将每一行石子数相加就转化为经典的Nim博弈 ...

  7. 使用CCleaner卸载chrome

    Google Chrome Update Patches Zero-Day Actively Exploited in the Wild 如果有同事使用google Chrome浏览器的话,请检查版本 ...

  8. [BZOJ1370][Baltic2003]Gang团伙 并查集+拆点

    Description 在某城市里住着n个人,任何两个认识的人不是朋友就是敌人,而且满足: 1. 我朋友的朋友是我的朋友: 2. 我敌人的敌人是我的朋友: 所有是朋友的人组成一个团伙.告诉你关于这n个 ...

  9. 如何加速tomcat启动速度

    在tomcat启动的时候,我们可以做一些优化设置来使得tomcat的启动更快速,下面是一些常见的优化加速启动的方法建议(以tomcat-7.+为例说明). 1.  Jars包 1.1.将一些不必要的j ...

  10. Java中的RTTI

    RTTI可以帮助我们在运行时识别对象和类的信息. 一般传统的RTTI有三种实现方式: 1. 向上转型或向下转型(upcasting and downcasting),在java中,向下转型(父类转成子 ...