ArrayBlockingQueue的原理和底层实现的数据结构 :

ArrayBlockingQueue是数组实现的线程安全的有界的阻塞队列,可以按照 FIFO(先进先出)原则对元素进行排序。

线程安全是指,ArrayBlockingQueue内部通过“互斥锁”保护竞争资源,实现了多线程对竞争资源的互斥访问。而有界,则是指ArrayBlockingQueue对应的数组是有界限的。 阻塞队列,是指多线程访问竞争资源时,当竞争资源已被某线程获取时,其它要获取该资源的线程需要阻塞等待;所谓公平的访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,先阻塞的线程先访问ArrayBlockingQueue队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才能够访问队列。然而为了保证公平性,通常会降低吞吐量。

1. ArrayBlockingQueue:基于数组实现的一个阻塞队列,在创建ArrayBlockingQueue对象时必须制定容量大小。 并且可以指定公平性与非公平性,默认情况下为非公平的,即不保证等待时间最长的队列最优先能够访问队列。

2.ArrayBlockingQueue内部通过Object[]数组保存数据的,也就是说ArrayBlockingQueue本质上是通过数组实现的。ArrayBlockingQueue的大小,即数组的容量是在创建创建ArrayBlockingQueue时候指定的。

3.如下图所示,ArrayBlockingQueue和ReentrantLock是组合关系,ArrayBlockingQueue中包含一个ReentrantLock对象。ReentrantLock是可重入的互斥锁。ArrayBlockingQueue就是根据ReentrantLock互斥锁实现"多线程对共享资源的访问"。ReentrantLock分为公平锁和非公平锁,关于具体使用公平锁还是非公平锁,在创建ArrayBlockingQueue时可以指定;而且,ArrayBlockingQueue默认会使用非公平锁。

4.ArrayBlockingQueue和Condition是组合关系,ArrayBlockingQueue中包含两个Condition对象(notEmpty和notFull)。使用通知模式实现:所谓通知模式,当生产者往满的队列里面添加元素的时候,会阻塞生产者(调用Condition notFull.await()进行等待);当消费者消费了一个队列中的元素后,会通知(调用Condition notFull.signal()唤醒生产者)生产者当前队列可用。反之,当消费者消费的时候,发现队列是空的,则消费者会被阻塞(通过Condition的 notEmpty.await()进行等待),当生产者插入了队列中的一个元素后,则会调用notEmpty.signal()唤醒消费者继续消费。

ArrayBlockingQueue的数据结构如下:

ArrayBlockingQueue方法列表:

// 创建一个带有给定的(固定)容量和默认访问策略的 ArrayBlockingQueue。
ArrayBlockingQueue(int capacity)
// 创建一个具有给定的(固定)容量和指定访问策略的 ArrayBlockingQueue。
ArrayBlockingQueue(int capacity, boolean fair)
// 创建一个具有给定的(固定)容量和指定访问策略的 ArrayBlockingQueue,它最初包含给定 collection 的元素,并以 collection 迭代器的遍历顺序添加元素。
ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) // 将指定的元素插入到此队列的尾部(如果立即可行且不会超过该队列的容量),在成功时返回 true,如果此队列已满,则抛出 IllegalStateException。
boolean add(E e)
// 自动移除此队列中的所有元素。
void clear()
// 如果此队列包含指定的元素,则返回 true。
boolean contains(Object o)
// 移除此队列中所有可用的元素,并将它们添加到给定 collection 中。
int drainTo(Collection<? super E> c)
// 最多从此队列中移除给定数量的可用元素,并将这些元素添加到给定 collection 中。
int drainTo(Collection<? super E> c, int maxElements)
// 返回在此队列中的元素上按适当顺序进行迭代的迭代器。
Iterator<E> iterator()
// 将指定的元素插入到此队列的尾部(如果立即可行且不会超过该队列的容量),在成功时返回 true,如果此队列已满,则返回 false。
boolean offer(E e)
// 将指定的元素插入此队列的尾部,如果该队列已满,则在到达指定的等待时间之前等待可用的空间。
boolean offer(E e, long timeout, TimeUnit unit)
// 获取但不移除此队列的头;如果此队列为空,则返回 null。
E peek()
// 获取并移除此队列的头,如果此队列为空,则返回 null。
E poll()
// 获取并移除此队列的头部,在指定的等待时间前等待可用的元素(如果有必要)。
E poll(long timeout, TimeUnit unit)
// 将指定的元素插入此队列的尾部,如果该队列已满,则等待可用的空间。
void put(E e)
// 返回在无阻塞的理想情况下(不存在内存或资源约束)此队列能接受的其他元素数量。
int remainingCapacity()
// 从此队列中移除指定元素的单个实例(如果存在)。
boolean remove(Object o)
// 返回此队列中元素的数量。
int size()
// 获取并移除此队列的头部,在元素变得可用之前一直等待(如果有必要)。
E take()
// 返回一个按适当顺序包含此队列中所有元素的数组。
Object[] toArray()
// 返回一个按适当顺序包含此队列中所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。
<T> T[] toArray(T[] a)
// 返回此 collection 的字符串表示形式。
String toString()

总结下上面的方法:

 *非阻塞队列中的方法:
*
* 抛出异常的方法 Exception in thread "main" java.lang.IllegalStateException: Queue full *1. add(e) throw exception,将元素e插入到队列的末尾,如果插入成功,则返回true,如果插入失败 (队列已经满) 抛出异常
*2. remove(e) throw exception,移除队首元素,若移除成功,则返回true;若移除失败(队列为空)则抛出异常
*3. element() throw exception 获取队列首元素,若获取成功,则返回首元素,否则抛出异常 java.util.NoSuchElementException
*
* 返回特定值的方法
*
* 1.offer(E e),将元素e插入到队列末尾,如果插入成功,则返回true,如果插入失败(队列已满),返回false
* 2.poll(E e),移除并获取队首元素,若成功,则返回队首元素,否则返回null
* 3.peek(E e),获取队首元素,若成功,则返回队首元素,否则则返回null
 *  可以指定TimeOut:
*
* 3.offer(E e,long timeout, TimeUnit unit):向队列尾部存入元素e,如果队列满,则等待一定的时间,当达到timeout时候,则返回false,否则返回true
  4.poll(long timeout, TimeUnit unit):从队首获取元素,如果队列为空,则等待一定时间,当达到timeout时,如果没有取到,则返回null,如果取到则返回取到的元素
 阻塞队列中的几个重要方法:
* 1.put(E e) :用于队列尾部存入元素e,如果对满,则等待。
* 2.take():用于从对列首取出元素e,如果队列为空,则等待
 注意:阻塞队列包括了非阻塞队列中的大部分方法,上面列举的5个方法在阻塞队列中都存在,但是要注意这5个方法在阻塞队列中都进行了同步措施,都是线程安全的。

ArrayBlockingQueue源码分析(JDK1.7)

 

/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent;
import java.util.concurrent.locks.*;
import java.util.*; /**
* A bounded {@linkplain BlockingQueue blocking queue} backed by an
* array. This queue orders elements FIFO (first-in-first-out). The
* <em>head</em> of the queue is that element that has been on the
* queue the longest time. The <em>tail</em> of the queue is that
* element that has been on the queue the shortest time. New elements
* are inserted at the tail of the queue, and the queue retrieval
* operations obtain elements at the head of the queue.
*
* <p>This is a classic &quot;bounded buffer&quot;, in which a
* fixed-sized array holds elements inserted by producers and
* extracted by consumers. Once created, the capacity cannot be
* changed. Attempts to {@code put} an element into a full queue
* will result in the operation blocking; attempts to {@code take} an
* element from an empty queue will similarly block.
*
* <p>This class supports an optional fairness policy for ordering
* waiting producer and consumer threads. By default, this ordering
* is not guaranteed. However, a queue constructed with fairness set
* to {@code true} grants threads access in FIFO order. Fairness
* generally decreases throughput but reduces variability and avoids
* starvation.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <E> the type of elements held in this collection
*/
public class ArrayBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable { /**
* Serialization ID. This class relies on default serialization
* even for the items array, which is default-serialized, even if
* it is empty. Otherwise it could not be declared final, which is
* necessary here.
*/
private static final long serialVersionUID = -817911632652898426L; /** The queued items */
final Object[] items; /** items index for next take, poll, peek or remove */
int takeIndex; /** items index for next put, offer, or add */
int putIndex; /** Number of elements in the queue */
int count; /*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/ /** Main lock guarding all access */
final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull; // Internal helper methods /**
* Circularly increment i.
*/
final int inc(int i) {
return (++i == items.length) ? 0 : i;
} /**
* Circularly decrement i.
*/
final int dec(int i) {
return ((i == 0) ? items.length : i) - 1;
} @SuppressWarnings("unchecked")
static <E> E cast(Object item) {
return (E) item;
} /**
* Returns item at index i.
*/
final E itemAt(int i) {
return this.<E>cast(items[i]);
} /**
* Throws NullPointerException if argument is null.
*
* @param v the element
*/
private static void checkNotNull(Object v) {
if (v == null)
throw new NullPointerException();
} /**
* Inserts element at current put position, advances, and signals.
* Call only when holding lock.
*/
private void insert(E x) {
items[putIndex] = x;
putIndex = inc(putIndex);
++count;
notEmpty.signal();
} /**
* Extracts element at current take position, advances, and signals.
* Call only when holding lock.
*/
private E extract() {
final Object[] items = this.items;
E x = this.<E>cast(items[takeIndex]);
items[takeIndex] = null;
takeIndex = inc(takeIndex);
--count;
notFull.signal();
return x;
} /**
* Deletes item at position i.
* Utility for remove and iterator.remove.
* Call only when holding lock.
*/
void removeAt(int i) {
final Object[] items = this.items;
// if removing front item, just advance
if (i == takeIndex) {
items[takeIndex] = null;
takeIndex = inc(takeIndex);
} else {
// slide over all others up through putIndex.
for (;;) {
int nexti = inc(i);
if (nexti != putIndex) {
items[i] = items[nexti];
i = nexti;
} else {
items[i] = null;
putIndex = i;
break;
}
}
}
--count;
notFull.signal();
} /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and default access policy.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity < 1}
*/
public ArrayBlockingQueue(int capacity) {
this(capacity, false);
} /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and the specified access policy.
*
* @param capacity the capacity of this queue
* @param fair if {@code true} then queue accesses for threads blocked
* on insertion or removal, are processed in FIFO order;
* if {@code false} the access order is unspecified.
* @throws IllegalArgumentException if {@code capacity < 1}
*/
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0)
throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
} /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity, the specified access policy and initially containing the
* elements of the given collection,
* added in traversal order of the collection's iterator.
*
* @param capacity the capacity of this queue
* @param fair if {@code true} then queue accesses for threads blocked
* on insertion or removal, are processed in FIFO order;
* if {@code false} the access order is unspecified.
* @param c the collection of elements to initially contain
* @throws IllegalArgumentException if {@code capacity} is less than
* {@code c.size()}, or less than 1.
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ArrayBlockingQueue(int capacity, boolean fair,
Collection<? extends E> c) {
this(capacity, fair); final ReentrantLock lock = this.lock;
lock.lock(); // Lock only for visibility, not mutual exclusion
try {
int i = 0;
try {
for (E e : c) {
checkNotNull(e);
items[i++] = e;
}
} catch (ArrayIndexOutOfBoundsException ex) {
throw new IllegalArgumentException();
}
count = i;
putIndex = (i == capacity) ? 0 : i;
} finally {
lock.unlock();
}
} /**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning {@code true} upon success and throwing an
* {@code IllegalStateException} if this queue is full.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Collection#add})
* @throws IllegalStateException if this queue is full
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return super.add(e);
} /**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning {@code true} upon success and {@code false} if this queue
* is full. This method is generally preferable to method {@link #add},
* which can fail to insert an element only by throwing an exception.
*
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
insert(e);
return true;
}
} finally {
lock.unlock();
}
} /**
* Inserts the specified element at the tail of this queue, waiting
* for space to become available if the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
insert(e);
} finally {
lock.unlock();
}
} /**
* Inserts the specified element at the tail of this queue, waiting
* up to the specified wait time for space to become available if
* the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException { checkNotNull(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
insert(e);
return true;
} finally {
lock.unlock();
}
} public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : extract();
} finally {
lock.unlock();
}
} public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
notEmpty.await();
return extract();
} finally {
lock.unlock();
}
} public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return extract();
} finally {
lock.unlock();
}
} public E peek() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : itemAt(takeIndex);
} finally {
lock.unlock();
}
} // this doc comment is overridden to remove the reference to collections
// greater in size than Integer.MAX_VALUE
/**
* Returns the number of elements in this queue.
*
* @return the number of elements in this queue
*/
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
} // this doc comment is a modified copy of the inherited doc comment,
// without the reference to unlimited queues.
/**
* Returns the number of additional elements that this queue can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this queue
* less the current {@code size} of this queue.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return items.length - count;
} finally {
lock.unlock();
}
} /**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* <p>Removal of interior elements in circular array based queues
* is an intrinsically slow and disruptive operation, so should
* be undertaken only in exceptional circumstances, ideally
* only when the queue is known not to be accessible by other
* threads.
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
if (o.equals(items[i])) {
removeAt(i);
return true;
}
}
return false;
} finally {
lock.unlock();
}
} /**
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return {@code true} if this queue contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
if (o.equals(items[i]))
return true;
return false;
} finally {
lock.unlock();
}
} /**
* Returns an array containing all of the elements in this queue, in
* proper sequence.
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
public Object[] toArray() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
final int count = this.count;
Object[] a = new Object[count];
for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
a[k] = items[i];
return a;
} finally {
lock.unlock();
}
} /**
* Returns an array containing all of the elements in this queue, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the queue fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this queue.
*
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
final int count = this.count;
final int len = a.length;
if (len < count)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), count);
for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
a[k] = (T) items[i];
if (len > count)
a[count] = null;
return a;
} finally {
lock.unlock();
}
} public String toString() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
int k = count;
if (k == 0)
return "[]"; StringBuilder sb = new StringBuilder();
sb.append('[');
for (int i = takeIndex; ; i = inc(i)) {
Object e = items[i];
sb.append(e == this ? "(this Collection)" : e);
if (--k == 0)
return sb.append(']').toString();
sb.append(',').append(' ');
}
} finally {
lock.unlock();
}
} /**
* Atomically removes all of the elements from this queue.
* The queue will be empty after this call returns.
*/
public void clear() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
items[i] = null;
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
} /**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = count;
while (n < max) {
c.add(this.<E>cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
} /**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c, int maxElements) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = (maxElements < count) ? maxElements : count;
while (n < max) {
c.add(this.<E>cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count -= n;
takeIndex = i;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
} /**
* Returns an iterator over the elements in this queue in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this queue in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
} /**
* Iterator for ArrayBlockingQueue. To maintain weak consistency
* with respect to puts and takes, we (1) read ahead one slot, so
* as to not report hasNext true but then not have an element to
* return -- however we later recheck this slot to use the most
* current value; (2) ensure that each array slot is traversed at
* most once (by tracking "remaining" elements); (3) skip over
* null slots, which can occur if takes race ahead of iterators.
* However, for circular array-based queues, we cannot rely on any
* well established definition of what it means to be weakly
* consistent with respect to interior removes since these may
* require slot overwrites in the process of sliding elements to
* cover gaps. So we settle for resiliency, operating on
* established apparent nexts, which may miss some elements that
* have moved between calls to next.
*/
private class Itr implements Iterator<E> {
private int remaining; // Number of elements yet to be returned
private int nextIndex; // Index of element to be returned by next
private E nextItem; // Element to be returned by next call to next
private E lastItem; // Element returned by last call to next
private int lastRet; // Index of last element returned, or -1 if none Itr() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
lastRet = -1;
if ((remaining = count) > 0)
nextItem = itemAt(nextIndex = takeIndex);
} finally {
lock.unlock();
}
} public boolean hasNext() {
return remaining > 0;
} public E next() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
if (remaining <= 0)
throw new NoSuchElementException();
lastRet = nextIndex;
E x = itemAt(nextIndex); // check for fresher value
if (x == null) {
x = nextItem; // we are forced to report old value
lastItem = null; // but ensure remove fails
}
else
lastItem = x;
while (--remaining > 0 && // skip over nulls
(nextItem = itemAt(nextIndex = inc(nextIndex))) == null)
;
return x;
} finally {
lock.unlock();
}
} public void remove() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
int i = lastRet;
if (i == -1)
throw new IllegalStateException();
lastRet = -1;
E x = lastItem;
lastItem = null;
// only remove if item still at index
if (x != null && x == items[i]) {
boolean removingHead = (i == takeIndex);
removeAt(i);
if (!removingHead)
nextIndex = dec(nextIndex);
}
} finally {
lock.unlock();
}
}
} }

下面从ArrayBlockingQueue的创建,添加,取出,遍历这几个方面对ArrayBlockingQueue进行分析。

1.创建:

/**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and default access policy.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity < 1}
只是指定ArrayBlockingQueue的容量,默认采用非公平互斥锁
*/ public ArrayBlockingQueue(int capacity) { this(capacity, false); }
  /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and the specified access policy.
*
* @param capacity the capacity of this queue
* @param fair if {@code true} then queue accesses for threads blocked
* on insertion or removal, are processed in FIFO order;
* if {@code false} the access order is unspecified.
* @throws IllegalArgumentException if {@code capacity < 1}
指定容量和ReetrantLock的类型是否为公平锁创建阻塞队列
*/
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0)
throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}

上面源码进行说明:

items是保存“阻塞队列”数据的数组。它的定义如下:

 /** The queued items */
final Object[] items;

fair是“可重入的独占锁(ReentrantLock)”的类型。fair为true,表示是公平锁;fair为false,表示是非公平锁。notEmpty和notFull是锁的两个Condition条件。它们的定义如下:

    /** Main lock guarding all access */
final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull;

说明Lock的作用是提供独占锁机制,来保护竞争的资源;而Condition是为了更精细的对锁进行控制,但是依赖于lock,通过某个条件对多线程进行控制。

notEmpty表示"锁的非空条件"。当某线程想从队列中获取数据的时候,而此时队列中的数据为空,则该线程通过notEmpty.await()方法进行等待;

当其他线程向队列中插入元素之后,就调用notEmpty.signal()方法进行唤醒之前等待的线程。同理,notFull表示“锁满的条件“。当某个线程向队列中插入元素

,而此时队列已满时,该线程等待,即阻塞通过notFull.wait()方法;其他线程从队列中取出元素之后,就唤醒该等待的线程,这个线程调用notFull.signal()方法。

2.添加:

   

   

    /**
* Inserts the specified element at the tail of this queue, waiting
* for space to become available if the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
添加元素,当队列满的时候,该线程等待,即阻塞。
*/
public void put(E e) throws InterruptedException {
//校验插入的元素不能为null
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
//队列满的时候
while (count == items.length)
//线程调用await方法阻塞
notFull.await();
insert(e);
} finally {
lock.unlock();
}
}
  /** items index for next take, poll, peek or remove
下一个被取出元素的索引
*/
int takeIndex; /** items index for next put, offer, or add
下一个被添加元素的索引
*/
int putIndex; /** Number of elements in the queue
队列中的元素的个数
*/
int count;
  /**
* Inserts element at current put position, advances, and signals.
* Call only when holding lock.
*/
private void insert(E x) {
items[putIndex] = x;
putIndex = inc(putIndex);
//队列中的元素个数
++count;
//唤醒notEmpty Condition锁上面等待的线程,告诉该线程队列不为空了,可以消费了
notEmpty.signal();
}
 /**
* Circularly increment i.
队列中的元素个数==队列的长度的时候,队列满,则设置下一个被添加元素的索引为0
*/
final int inc(int i) {
return (++i == items.length) ? 0 : i;
}

2.取出: 


 public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
//获取锁,如果当前线程是中断状态,则抛出interruptedException异常
lock.lockInterruptibly();
try {
//队列为空的时候,则线程一直阻塞等待
while (count == 0)
notEmpty.await();
//取元素
return extract();
} finally {
lock.unlock();
}
}
/**
* Extracts element at current take position, advances, and signals.
* Call only when holding lock.
*/
private E extract() {
final Object[] items = this.items;
//强制将元素转化为"泛型E"
E x = this.<E>cast(items[takeIndex]);
items[takeIndex] = null;
//设置下一个被取出元素的索引
takeIndex = inc(takeIndex);
//将队列中的元素-1
--count;
//唤醒notFull条件上面等待的线程,告诉该线程队列不是满的了,可以添加元素了
notFull.signal();
return x;
}

JUC回顾之-ArrayBlockingQueue底层实现和原理的更多相关文章

  1. JUC回顾之-CyclicBarrier底层实现和原理

    1.CyclicBarrier 字面意思是可循环(Cyclic)使用的屏障(Barrier).它要做的事情是让一组线程到达一个屏障(同步点)时被阻塞,直到最后一个线程到达屏障时候,屏障才会开门.所有被 ...

  2. JUC回顾之-Semaphore底层实现和原理

    1.控制并发线程数的Semaphore Semaphore(信号量)是用来控制同时访问特定资源的线程数量,它通过协调各个线程,保证合理的使用公共资源. 线程可以通过acquire()方法来获取信号量的 ...

  3. JUC回顾之-ScheduledThreadPoolExecutor底层实现原理和应用

    项目中经常使用定时器,比如每隔一段时间清理下线过期的F码,或者应用timer定期查询MQ在数据库的配置,根据不同version实现配置的实时更新等等.但是timer是存在一些缺陷的,因为Timer在执 ...

  4. JUC回顾之-AQS同步器的实现原理

    1.什么是AQS? AQS的核心思想是基于volatile int state这样的volatile变量,配合Unsafe工具对其原子性的操作来实现对当前锁状态进行修改.同步器内部依赖一个FIFO的双 ...

  5. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  6. Java多线程系列--“JUC线程池”05之 线程池原理(四)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  7. 20.并发容器之ArrayBlockingQueue和LinkedBlockingQueue实现原理详解

    1. ArrayBlockingQueue简介 在多线程编程过程中,为了业务解耦和架构设计,经常会使用并发容器用于存储多线程间的共享数据,这样不仅可以保证线程安全,还可以简化各个线程操作.例如在“生产 ...

  8. JUC中的AQS底层详细超详解

    摘要:当你使用java实现一个线程同步的对象时,一定会包含一个问题:你该如何保证多个线程访问该对象时,正确地进行阻塞等待,正确地被唤醒? 本文分享自华为云社区<JUC中的AQS底层详细超详解,剖 ...

  9. Java多线程系列--“JUC线程池”04之 线程池原理(三)

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...

随机推荐

  1. Linux使用redis

    在linux遇到这种情况. 注意,这里本redis 用的端口是6389 通过 ps -aux 看到redis 启动了: root ? Ssl Jun14 : redis-server *: root ...

  2. [转]在MySQL中创建实现自增的序列(Sequence)的教程

    原文地址:https://www.jb51.net/article/76124.htm 项目应用中,曾有以下一个场景: 接口中要求发送一个int类型的流水号,由于多线程模式,如果用时间戳,可能会有重复 ...

  3. [转]你所不知的 CSS ::before 和 ::after 伪元素用法

    SS 有两个说不上常用的伪类 :before 和 :after,偶尔会被人用来添加些自定义格式什么的,但是它们的功用不仅于此.前几天发现了 Creative Link Effects 这个非常有意思的 ...

  4. android开发(28) 做个 指南针 应用

    参考网上的资料,做了个指南针应用玩玩. 步骤: 1.获得 SensorManager. mSensorManager = (SensorManager) getSystemService(SENSOR ...

  5. WebForm发送邮件

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Ne ...

  6. java 缩放算法 双线性插值,双三次插值

    双线性插值的效果对于放大的图像而言较领域插值来得平滑,但是却使得图像变得模糊而且仍然会有一部分锯齿现象. 双三次插值更好比双线性插值更好.   图像缩放之双三次插值法 数字图像处理之双线性插值

  7. EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RE NOT. RENEWALS ARE LESSER THAN THRESHOLD AND HENCE THE INSTANCES ARE NOT BEING EXPIRED JUST TO BE SAFE.

    启动两个client,过了一会,停了其中一个,访问注册中心时,界面上显示了红色粗体警告信息: 查阅了很多资料,终于了解了中间的问题.现将理解整理如下: Eureka server和client之间每隔 ...

  8. 为什么Java匿名内部类访问的外部局部变量或参数需要被final修饰

    大部分时候,类被定义成一个独立的程序单元.在某些情况下,也会把一个类放在另一个类的内部定义,这个定义在其他类内部的类就被称为内部类,包含内部类的类也被称为外部类. class Outer { priv ...

  9. 在天河二号上对比Julia,Python和R语言

    Julia是一款高级高效为技术计算(technical computing)而设计的编程语言,其语法与其他计算环境类似.其为分布式计算和并行所设计,最知名的地方在于其接近C语言的高效率. 按开发者的话 ...

  10. GridView Print and Print Preview

    sing System.Linq; using System.Printing; using System.Windows; using System.Windows.Controls; using ...