3944: Sum

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3471  Solved: 946
[Submit][Status][Discuss]

Description

 

Input

一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问
 

Output

一共T行,每行两个用空格分隔的数ans1,ans2
 

Sample Input

6
1
2
8
13
30
2333

Sample Output

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

HINT

 

Source

我们考虑令:
\[F_n = \sum_{d|n}\varphi(d)\]

那么,有:
\[\sum_{i=1}^{n}F_i = \sum_{i=1}^{n}\sum_{d|i}\varphi(d) = \sum_{d=1}^{n}\varphi(d)\times \lfloor\frac{n}{d}\rfloor = \sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)\]

为什么最后一步可以这么转化呢?我们考虑一个 \(i\) ,论 \(\varphi(i)\) 对答案的贡献:

在最后一个等式的左边,\(\varphi(i)\) 对答案的贡献为:\(\lfloor\frac{n}{i}\rfloor\),这很显然。

在等式的右边,当 \(i\times d \le n\) 的时候,\(\varphi(i)\)才会对答案产生贡献,所以对于每一个 \(d\le\lfloor\frac{n}{i}\rfloor\),\(\varphi(i)\)都会对答案产生贡献,所以在等式右边,\(\varphi(i)\) 对答案的贡献也为:\(\lfloor\frac{n}{i}\rfloor\)。

于是等式是成立的。

不懂的话,移步这里:莫比乌斯反演与杜教筛 笔记

那么就有:
\[\sum_{i=1}^{n}\varphi(i) = \sum_{i=1}^{n}\sum_{d|i}\varphi(d) - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)\]

还有:
\[\sum_{i=1}^{n}\sum_{d|i}\varphi(d) = \sum_{i=1}^{n}i = \frac{n\times(n+1)}{2}\]

所以:
\[\sum_{i=1}^{n}\varphi(i) = \frac{n\times(n+1)}{2} - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)\]

所以算\(\sum_{i=1}^{n}\varphi(i)\)的时候就可以记忆化搜索啦。

据说,我们把 \(N^{\frac{2}{3}}\) 之内的答案先筛出来,然后再进行记忆化搜索,复杂度就是 \(O(N^{\frac{2}{3}})\)的了。

然后同理,有:
\[\sum_{i=1}^{n}\mu(i) = 1 - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)\]

时空复杂度均为 \(O(N^{\frac{2}{3}})\) 。

#include<cstdio>
#include<cstring>
#define clr(s) memset(s,0,sizeof s)
using namespace std;
typedef long long ll;
const int N=1e5+,M=2e6+;
int T,n,m,tot,prime[M/];bool check[M];
ll phi[M],mu[M];
ll alpha[N],beta[N];bool vis[N];
inline void sieve(){
m=M-;mu[]=phi[]=;
for(int i=;i<=m;i++){
if(!check[i]) prime[++tot]=i,mu[i]=-,phi[i]=i-;
for(int j=;j<=tot&&i*prime[j]<=m;j++){
check[i*prime[j]]=;
if(!(i%prime[j])){mu[i*prime[j]]=;phi[i*prime[j]]=phi[i]*prime[j];break;}
mu[i*prime[j]]=-mu[i];phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for(int i=;i<=m;i++) mu[i]+=mu[i-],phi[i]+=phi[i-];
}
inline ll GetPhi(int x){
return x<=m?phi[x]:alpha[n/x];
}
inline ll GetMu(int x){
return x<=m?mu[x]:beta[n/x];
}
void solve(int x){
if(x<=m) return ;
int t=n/x;
if(vis[t]) return ;
vis[t]=;
alpha[t]=(ll)x*((ll)x+)>>;
beta[t]=;
for(ll i=,pos;i<=x;i=pos+){//假如 x=2^31-1,那么i会爆int
pos=x/(x/i);
solve(x/i);
alpha[t]-=GetPhi(x/i)*(pos-i+);
beta[t]-=GetMu(x/i)*(pos-i+);
}
}
int main(){
sieve();
for(scanf("%d",&T);T--;clr(vis)){
scanf("%d",&n);
if(n<=m){
printf("%lld %lld\n",phi[n],mu[n]);
}
else{
solve(n);
printf("%lld %lld\n",alpha[],beta[]);
}
}
return ;
}

3944: Sum[杜教筛]的更多相关文章

  1. bzoj 3944 Sum —— 杜教筛

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...

  2. BZOJ 3944: Sum [杜教筛]

    3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...

  3. [BZOJ3944]Sum(杜教筛)

    3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 6201  Solved: 1606[Submit][Status][Discuss ...

  4. 洛谷P4213 Sum(杜教筛)

    题目描述 给定一个正整数N(N\le2^{31}-1)N(N≤231−1) 求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1​=∑i=1 ...

  5. [bzoj3944] sum [杜教筛模板]

    题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...

  6. bzoj3944: Sum 杜教筛板子题

    板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...

  7. ●杜教筛入门(BZOJ 3944 Sum)

    入门杜教筛啦. http://blog.csdn.net/skywalkert/article/details/50500009(好文!) 可以在$O(N^{\frac{2}{3}})或O(N^{\f ...

  8. bzoj 3944: Sum(杜教筛)

    3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4930  Solved: 1313[Submit][Status][Discuss ...

  9. bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】

    一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...

随机推荐

  1. tf.variable_scope

    转载:https://blog.csdn.net/gaoyueace/article/details/79079068 例如: #在名字为ae的命名空间内创建变量 with tf.variable_s ...

  2. apache用户认证 域名跳转 Apache访问日志

  3. JSTL SQL标签库 使用

    推荐博客:http://blog.sina.com.cn/s/blog_4f925fc30101820u.html 怕博主把原文删了,所以在这里先保存一下. SQL标签库 JSTL提供了与数据库相关操 ...

  4. Bat注释符号

    打开命令显示:echo on关闭命令显示:echo off, @ echo off, (加@表示连echo off都不显示,不然会显示出echo off的命令) rem : 注释, 表示不执行rem ...

  5. MySQL---insert into select from

    INSERT INTO perf_week(node_id,perf_time,pm25,pm10,temp,humi) SELECT node_id,'2016-12-22 11:55:00' AS ...

  6. GoF--装饰者设计模式

    顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例. 装饰器模式的应用场景: 1.需要扩展一个类的功能. 2.动态的为 ...

  7. 在python中重新导入模块

    重新加载模块 倘若,更改了已经在 Python shell 中导入的模块,然后重新导入该模块,Python 会认为“我已经导入了该模块,不需要再次读取该文件”,所以更改将无效. 要解决这个问题,有以下 ...

  8. Flickr Hosts

    Test Page: http://www.flickr.com/help/test Hosts: 77.238.160.184 farm6.staticflickr.com 98.139.21.45 ...

  9. 【AI】Win10-Tensorflow

    一.安装 第一步:先安装anaconda3第二步:pip install --upgrade --ignore-installed tensorflow或者:pip install tensorflo ...

  10. 旺店通erp系统

    http://www.wangdian.cn/ api 文档:https://wenku.baidu.com/view/cd0d21ffbd64783e08122b80.html