洛谷P1621-集合
Problem 洛谷P1621-集合
Accept:496 Submit: 1.4k
Time Limit: 1000 mSec Memory Limit : 128MB
Problem Description
现在给你一些连续的整数,它们是从A到B的整数。一开始每个整数都属于各自的集合,然后你需要进行一下的操作:
每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于P的公共质因数,那么把它们所在的集合合并。
反复如上操作,直到没有可以合并的集合为止。
现在Caima想知道,最后有多少个集合。
Input
一行,三个整数A,B,P。
【数据规模】
A≤B≤100000;
2≤P≤B。
Output
一个数,表示最终集合的个数。
Sample Input
10 20 3
Sample output
7
题目链接:https://www.luogu.org/problemnew/show/P1621
题解:水题,之所以记录一下是因为感觉自己在做这道题的时候才感觉真的弄明白了欧拉筛的证明,以前会证明,但是感觉是只是机械化的证明,没有自己的理解。
我认为证明中最精华的一句话是,在i%prime[j] == 0,之前,prime[j]均为i*prime[j]的最小素因子,这个结论很显然,但是起到了决定性作用......
筛完素数就是简单的并查集。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std; const int maxn = +;
bool is_prime[maxn];
int tot,prime[maxn];
int pre[maxn];
int a,b,p; void get_Prime(){
memset(is_prime,true,sizeof(is_prime));
is_prime[] = is_prime[] = false;
tot = ;
for(int i = ;i < maxn-;i++){
if(is_prime[i]) prime[tot++] = i;
for(int j = ;j<tot && prime[j]<=maxn/i;j++){
is_prime[i*prime[j]] = false;
if(i%prime[j] == ) break;
}
}
} int findn(int x){
return x == pre[x] ? x : pre[x] = findn(pre[x]);
} void merge_node(int x,int y){
int fx = findn(x),fy = findn(y);
if(fx != fy){
pre[fx] = fy;
}
} int main()
{
//freopen("input.txt","r",stdin);
get_Prime();
scanf("%d%d%d",&a,&b,&p);
for(int i = a;i <= b;i++){
pre[i] = i;
}
int pos = lower_bound(prime,prime+tot,p)-prime;
for(int i = pos;prime[i] <= b;i++){
for(int j = ;j*prime[i] <= b;j++){
if((j-)*prime[i] < a) continue;
merge_node((j-)*prime[i],j*prime[i]);
}
}
int cnt = ;
for(int i = a;i <= b;i++){
if(pre[i] == i) cnt++;
}
printf("%d\n",cnt);
return ;
}
洛谷P1621-集合的更多相关文章
- 洛谷——P1621 集合
P1621 集合 题目描述 现在给你一些连续的整数,它们是从A到B的整数.一开始每个整数都属于各自的集合,然后你需要进行一下的操作: 每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于P的公共 ...
- 洛谷 P1621 集合
目录 题目 思路 \(Code\) 题目 P1621 集合 思路 并查集+埃氏筛,一开始连通块的个数是\(b-a+1\)个,在筛素数的过程中只要当前素数大于\(p\)就对该素数筛出来的数进行判断,如果 ...
- 洛谷P1621 集合 [2017年6月计划 数论13]
P1621 集合 题目描述 现在给你一些连续的整数,它们是从A到B的整数.一开始每个整数都属于各自的集合,然后你需要进行一下的操作: 每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于P的公共 ...
- 洛谷 P1466 集合 Subset Sums Label:DP
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- 洛谷P1491 集合位置 [最短路,SPFA]
题目传送门 题目描述 每次有大的活动,大家都要在一起“聚一聚”,不管是去好乐迪,还是避风塘,或者汤姆熊,大家都要玩的痛快.还记得心语和花儿在跳舞机上的激情与释放,还记得草草的投篮技艺是如此的高超,还记 ...
- 洛谷 P2415 集合求和【数学公式/模拟】
给定一个集合s(集合元素数量<=30),求出此集合所有子集元素之和. 输入输出格式 输入格式: 集合中的元素(元素<=1000) 输出格式: 和 输入输出样例 输入样例#1: 2 3 输出 ...
- 洛谷 P1491 集合位置
P1491 集合位置 题目描述 每次有大的活动,大家都要在一起“聚一聚”,不管是去好乐迪,还是避风塘,或者汤姆熊,大家都要玩的痛快.还记得心语和花儿在跳舞机上的激情与释放,还记得草草的投篮技艺是如此的 ...
- 洛谷P2415 集合求和
题目描述 给定一个集合s(集合元素数量<=30),求出此集合所有子集元素之和. 输入输出格式 输入格式: 集合中的元素(元素<=1000) 输出格式: 和 输入输出样例 输入样例#1: 2 ...
- 洛谷P1978 集合 [2017年6月计划 数论08]
P1978 集合 题目描述 集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合.集合有如 下的特性: •无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的. •互异性 ...
随机推荐
- Java基础之 运算符
前言:Java内功心法之运算符,看完这篇你向Java大神的路上又迈出了一步(有什么问题或者需要资料可以联系我的扣扣:734999078) 计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,J ...
- SQL while循环
ALTER Proc [dbo].[p_GetServerDataCursor] AS BEGIN IF EXISTS ( SELECT * FROM sys.objects WHERE object ...
- 使用WPF教你一步一步实现连连看(一)
第一步: 问题,怎样动态的建立一个10*10的grid(布局) for (int i = 0; i < 10; i++) { RowDefinition rowDef = new RowDefi ...
- Java静态成员与实例成员
Java静态成员与实例成员 类是一种类型,类中定义的所有成员都归此的对象所有,这些成员成为实例成员:而某些成员想要被所有类的所有对象共享,此时的成员不属于某个对象,而是属于整个类,这些成员成为静态成员 ...
- 乐字节-Java8新特性之Date API
上一篇文章,小乐给大家带来了Java8新特性之Optional,接下来本文将会给大家介绍Java8新特性之Date API 前言: Java 8通过发布新的Date-Time API来进一步加强对日期 ...
- HTML5 template元素
前言 转自http://www.zhangxinxu.com/wordpress/2014/07/hello-html5-template-tag/ 在单页面应用,我们对页面的无刷新有了更高的要求,H ...
- (二)在实战中使用Sass和Compass
第三章 无需计算玩转CSS网格布局 3.1 网格布局介绍 3.2 使用网格布局 3.2.1 术语 术语名 定义 是否涉及HTML标签 列 内容度量的垂直单位 否 容器 构成一个网格布局的HTML元素 ...
- Layui treeGrid
目前treeGrid的源码不是很完善, 没有开放, 只有社区里面有, 想用的可以看看下面方法: 1.加入treeGrid.js文件 (1)layui 的treeGrid 下载地址: https: ...
- ArcGIS JavaScript API动态图层
矢量动态图层 <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Typ ...
- Ansible--inventory
简介 Inventory 是 Ansible 管理主机信息的配置文件,相当于系统 HOSTS 文件的功能,默认存放在 /etc/ansible/hosts.为方便批量管理主机,便捷使用其中的主机分组, ...