嘟嘟嘟




鉴于一些知道的人所知道的,不知道的人所不知道的原因,我来发NOIPday2T1的题解了。




\(O(n ^ 2)\)的做法自然很暴力,枚举断边断环为链就行了。

所以我是来讲\(O(nlogn)\)的做法的。




准确说是排序复杂度,剩下的都是\(O(n)\)的。

大体思想就是通过一遍dfs\(O(n)\)找到该断的边,然后跑一遍树输出答案就行了。




为了方便,我们把在环外并和环上节点直接相连的点称作某个点的子结点。

那么对于环上的结点\(i\)和下一个结点\(nxt[i]\),肯定是先把小于\(nxt[i]\)的\(i\)的子结点都走完了,然后判断是该走\(nxt[i]\)还是回溯(就是断边)。

回溯的话,就说明前面有一个子结点比\(nxt[i]\)小而且这个点当时又没走。

所以维护一个变量\(tp\)记录这个东西。首先要清楚的一点是如果回溯的话,那么路径上所有没走过的点都得走。然后每一次遍历点\(i\)的出边,对于所有大于\(nxt[i]\)的子结点取min。如果存在这个点,就必须要更新tp。

然后每一次判断一下,如果\(tp < nxt[i]\),就断边啦。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m;
vector<int> v[maxn]; bool in[maxn];
int st[maxn], top = 0, a[maxn], cnt = 0;
In bool dfs_cir(int now, int _f) //找环
{
st[++top] = now; in[now] = 1;
for(int i = 0, to; i < (int)v[now].size(); ++i)
{
if((to = v[now][i]) == _f) continue;
if(in[to])
{
while(st[top] ^ to) a[++cnt] = st[top--];
a[++cnt] = st[top];
return 1;
}
if(dfs_cir(to, now)) return 1;
}
in[st[top--]] = 0; return 0;
} In void dfs(int now, int _f)
{
write(now), space;
for(int i = 0, to; i < (int)v[now].size(); ++i) if((to = v[now][i]) ^ _f) dfs(to, now);
} bool vis[maxn]; int main()
{
n = read(); m = read();
for(int i = 1; i <= m; ++i)
{
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
for(int i = 1; i <= n; ++i) sort(v[i].begin(), v[i].end());
if(m == n - 1) {dfs(1, 0); return 0;}
dfs_cir(1, 0);
reverse(a + 1, a + cnt + 1); //以下三条语句是判断开始往环的那一头走
if(a[2] > a[cnt]) reverse(a + 2, a + cnt + 1);
for(int i = 1; i <= cnt; ++i) vis[a[i]] = 1;
a[cnt + 1] = a[1];
for(int i = 1, tp = a[cnt]; i <= cnt; ++i)
{
int Min = INF;
for(int j = 0, to; j < (int)v[a[i]].size(); ++j)
if(!vis[to = v[a[i]][j]] && to > a[i + 1]) Min = min(Min, to);
if(Min ^ INF) tp = Min;
if(tp < a[i + 1] || i == cnt) //断边,直接从vector中删除元素
{
vector<int>::iterator it = lower_bound(v[a[i]].begin(), v[a[i]].end(), a[i + 1]);
v[a[i]].erase(it);
vector<int>::iterator it2 = lower_bound(v[a[i + 1]].begin(), v[a[i + 1]].end(), a[i]);
v[a[i + 1]].erase(it2);
break;
}
}
dfs(1, 0);
return 0;
}

[NOIP2018]旅行的更多相关文章

  1. 【LG5022】[NOIP2018]旅行

    [LG5022][NOIP2018]旅行 题面 洛谷 题解 首先考虑一棵树的部分分怎么打 直接从根节点开始\(dfs\),依次选择编号最小的儿子即可 而此题是一个基环树 怎么办呢? 可以断掉环上的一条 ...

  2. 竞赛题解 - NOIP2018 旅行

    \(\mathcal {NOIP2018} 旅行 - 竞赛题解\) 坑还得一层一层的填 填到Day2T1了 洛谷 P5022 题目 (以下copy自洛谷,有删减/修改 (●ˇ∀ˇ●)) 题目描述 小 ...

  3. NOIP2018 旅行 和 赛道修建

    填很久以前的坑. 旅行 给一棵 n 个点的基环树,求字典序最小的DFS序. n ≤ 5000 题解 O(n2) 做法非常显然,枚举断掉环上哪条边然后贪心即可.当然我去年的骚操作只能得88分. O(n ...

  4. [NOIP2018]:旅行(数据加强版)(基环树+搜索+乱搞)

    题目描述 小$Y$是一个爱好旅行的$OIer$.她来到$X$国,打算将各个城市都玩一遍.小$Y$了解到,$X$国的$n$个城市之间有$m$条双向道路.每条双向道路连接两个城市.不存在两条连接同一对城市 ...

  5. NOIP2018旅行

    这道题考场上的时候暴力写RE了,我果然很菜. 看了一篇大佬的的题解才明白 dalao的题解 但是解释很少哇,为了造福人类,在下发一篇详细一点的题解. 预处理:用vector把与每个点相连的点存起来,排 ...

  6. 【比赛】NOIP2018 旅行

    发现 \(m\) 只有两种取值,于是可做了 树的直接贪心 图的枚举环上的边去掉,然后做树的贪心,搜的时候剪一下枝吧 写得有点乱 #include<bits/stdc++.h> #defin ...

  7. luogu5022 [NOIp2018]旅行 (dfs)

    m=n-1的时候,就直接贪心地dfs就可以 m=n的话,就可以枚举删掉一条边,然后照着m=n-1做 $O(n^2)$大概能过 (然而我眼瞎看不到m<=n) #include<cstdio& ...

  8. [NOIP2018]旅行(数据加强版)(图论+基环树)

    数据范围多了2个0就是不一样,O(n^2)只能68分了.(其中60分是n=m+1和原题一样的做法送的),这题直接从NOIP难度变为NOI Plus难度了不说废话直接写题解:首先dfs一遍找到环,然后和 ...

  9. 【题解】NOIP2018 旅行

    题目戳我 \(\text{Solution:}\) 首先题目描述有一点不准确:回头是必须要走完一条路无路可走的时候才能返回. 对于树的情况:显然贪心做就完事了. 对于基环树的情况:对于一个\(n\)条 ...

随机推荐

  1. stark组件之多级过滤

    一.引子 在我们浏览很多页面时,会发现一般情况下都有一个分类的功能,而且还是多个类别同时控制,这就是多级过滤.如下图: 一行代表一个类别,第一行就是展示了所有的出版社,选中后就会以出版社分类,第二行就 ...

  2. Linux ELF 文件格式

    ELF 文件类型 ELF (Executable Linkable Format) 是 linux 下的可执行文件格式,与 windows 下的 PE (Portable Executable) 格式 ...

  3. IdentityServer4 中文文档 -9- (快速入门)使用客户端凭证保护API

    IdentityServer4 中文文档 -9- (快速入门)使用客户端凭证保护API 原文:http://docs.identityserver.io/en/release/quickstarts/ ...

  4. linux 系统filezilla无法上传文件 553 Could not create

    做网站过程中遇见了很多问题,解决了但是解决方法过一段时间就会遗忘,整理出来以便以后查看. 响应: 553 Could not create file.错误: 严重文件传输错误 解决方案: 一.必须将站 ...

  5. csharp: sum columns or rows in a dataTable

    DataTable dt = setData(); // Sum rows. //foreach (DataRow row in dt.Rows) //{ // int rowTotal = 0; / ...

  6. VUE CLI 3.0 项目引入 ElementUI

    ElementUI 官网: http://element-cn.eleme.io/#/zh-CN/component/installation 一.通过npm安装依赖包 1. 进入到项目目录,执行指令 ...

  7. LVS主从部署配置和使用

    LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统.本项目在1998年5月由章文嵩博士成立,是中国国内最早出现的自由软件项目之一. LVS是L ...

  8. 对比学IT---路由器和linux流量统计的差别

    1. 路由器使用MQC来统计端口入出方向,特定特征的数据流. 显示policy 的统计信息 配置policy: #traffic classifier vlan5traffic operator an ...

  9. loadrunner 脚本开发-字符串编码转换

    字符串编码转换 by:授客 QQ:1033553122   相关函数 lr_convert_string_encoding函数 功能:字符串编码转换 原型: int lr_convert_string ...

  10. (网页)angularjs中的验证input输入框只能输入数字和小数点

    百度的资料:自己记录看下 把js的验证方法改成angular可使用的方法 AngularJS文件的写法: $scope.clearNoNum = function(obj,attr){ //先把非数字 ...